O Portal do docente é uma ferramenta de apoio que permite a cada Professor da FCT NOVA criar autonomamente a sua página pessoal e aí inserir o seu curriculum, divulgar artigos científicos, apresentar as disciplinas leccionadas, partilhar feeds, etc.
The use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 - 1s2 1 S0 diagram line and the 1s2s 3 S1 - 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 P j 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 - 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.
Engineering, Tissue, Cell Based, Campus D. E. Gualtar, Maria Manuela, Estima Gomes, A. N. A. Rita, Cruz Duarte, Sentido D. E. Fornecer, U. M. A. Estrutura, Porosa E. Interconectada, and Suporte D. E. A. O. Crescimento. "{PT 106220}." 106220 (2013). Abstract
n/a
Engineering, Tissue, Cell Based, Campus D. E. Gualtar, Maria Manuela, Estima Gomes, A. N. A. Rita, Cruz Duarte, Sentido D. E. Fornecer, U. M. A. Estrutura, Porosa E. Interconectada, and Suporte D. E. A. O. Crescimento. "{PT 106220}." 106220 (2013). Abstract
The spontaneous two-photon emission in hydrogenlike ions is investigated within the framework of second- order perturbation theory and Dirac’s equation. Special attention is paid to the angular correlation of the emitted photons as well as to the degree of linear polarization of one of the two photons, if the second is just observed under arbitrary angles. Expressions for the angular correlation and the degree of linear polarization are expanded in powers of cosine functions of the two-photon opening angle, whose coefficients depend on the atomic number and the energy sharing of the emitted photons. The effects of including higher (electric and magnetic) multipoles upon the emitted photon pairs beyond the electric-dipole approximation are also discussed. Calculations of the coefficients are performed for the transitions 2s1/2 → 1s1/2, 3d3/2 → 1s1/2, and 3d5/2 → 1s1/2, along the entire hydrogen isoelectronic sequence (1
The spontaneous two-photon emission in hydrogenlike ions is investigated within the framework of second- order perturbation theory and Dirac’s equation. Special attention is paid to the angular correlation of the emitted photons as well as to the degree of linear polarization of one of the two photons, if the second is just observed under arbitrary angles. Expressions for the angular correlation and the degree of linear polarization are expanded in powers of cosine functions of the two-photon opening angle, whose coefficients depend on the atomic number and the energy sharing of the emitted photons. The effects of including higher (electric and magnetic) multipoles upon the emitted photon pairs beyond the electric-dipole approximation are also discussed. Calculations of the coefficients are performed for the transitions 2s1/2 → 1s1/2, 3d3/2 → 1s1/2, and 3d5/2 → 1s1/2, along the entire hydrogen isoelectronic sequence (1 Z 100).
Theoretical transition energies and probabilities for He-, Li and Be-like Praseodymium ions are calcu- lated in the framework of the multi-configuration Dirac-Fock method (MCDF), including QED corrections. These calculated values are compared to recent experimental data obtained in the Livermore SuperEBIT electron beam ion trap facility [1].
Theoretical transition energies and probabilities for He-, Li and Be-like Praseodymium ions are calcu- lated in the framework of the multi-configuration Dirac-Fock method (MCDF), including QED corrections. These calculated values are compared to recent experimental data obtained in the Livermore SuperEBIT electron beam ion trap facility [1].
This work presents an experimental study concerning the post-punching behaviour of flat slabs strengthened with a new technique based on post-tensioning with anchorages by bonding using an epoxy adhesive. This strengthening technique proved efficient with respect to ultimate and serviceability states. Five slab specimens were tested in the post-punching range and it was found that the post-punching resistance was on average 78{%} of the punching resistance. This paper reports the development of strand forces and slab displacements from the beginning of the tests, including the bond stresses developed at several stages of the loading process. It was observed that top reinforcement bars were capable of transmitting post-punching loads to the prestressing strands. Taking this into account and based on the load bath envisaged from the column to the slab, expressions for the vertical load capacities corresponding to the parts of the load path are presented and compared with the experimental results, showing their ability to predict both ultimate loads and modes of failure. Compared with other strengthening techniques, the one proposed here not only upgrades ultimate and serviceability behaviour but also adds post-punching resistance, which is a great advantage in the event of progressive collapse, since it may avoid the collapse of an entire structure, thus reducing the risk of material and human losses.
Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed.The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells.The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.
The 1s2s 3S1 ! 1s2 1S0 relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.
The 1s2s 3S1 - 1s2 1S0 relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.
We study the most important processes for the creation of excited states in He-like through C- like praseodymium ions from the ions ground configurations, leading to the emission of K X-ray lines. Theoretical values for inner-shell excitation and ionization cross sections, transition probabilities and energies for the deexcitation processes, are calculated in the framework of the multi-configuration Dirac- Fock method, including QED corrections. Using these calculated values, a theoretical Kα X-ray spectrum is obtained, which is compared to recent experimental data obtained in the Livermore Super-EBIT electron beam ion trap facility.