Neagu, E. R., R. M. Neagu, C. J. Dias, M. C. Lanca, P. Inacio, and J. N. Marat-Mendes. "
Electrical Method to Study the Weak Molecular Movements at Nanometric Scale in Low Mobility Materials."
Advanced Materials Forum V, Pt 1 and 2. Eds. L. G. Rosa, and F. Margarido. Vol. 636-637. Materials Science Forum, 636-637. 2010. 430-436.
AbstractFor the characterization of the new materials and for a better understanding of the connection between structure and properties it is necessary to use more and more sensible methods to study molecular movement at nanometric scale. This paper presents the experimental basis for a new electrical method to study the fine molecular movements at nanometric scale in dielectric materials. The method will be applied for polar and non-polar materials characterization. Traditionally, the electrical methods used to study the molecular movements are based on the movements of the dipoles that are parts of the molecules. We have proposed recently a combined protocol to analyze charge injection/extraction, transport, trapping and detrapping in low mobility materials. The experimental results demonstrate that the method can be used to obtain a complex thermogram which contains information about all molecular movements, even at nanoscopic level. Actually during the charging process we are decorating the structure with space charge and during the subsequent heating we are observing an apparent peak and the genuine peaks that are related to charge de-trapping determined by the molecular movement. The method is very sensitive, very selective and allows to determinate the parameters for local and collective molecular movements, including the temperature dependence of the activation energy and the relaxation time.
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, and J. N. Marat-Mendes. "
Medium Electric Field Electron Injection/Extraction at Metal-Dielectric Interface."
Advanced Materials Forum V, Pt 1 and 2. Eds. L. G. Rosa, and F. Margarido. Vol. 636-637. Materials Science Forum, 636-637. 2010. 437-443.
AbstractThe isothermal charging current and the isothermal discharging current in low mobility materials are analyzed either in terms of polarization mechanisms or in terms of charge injection/extraction at the metal-dielectric interface and the conduction current through the dielectric material. We propose to measure the open-circuit isothermal charging and discharging currents just to overpass the difficulties related to the analysis of the conduction mechanisms in dielectric materials. We demonstrate that besides a polarization current there is a current related to charge injection or extraction at the metal-dielectric interface and a reverse current related to the charge trapped into the shallow superficial or near superficial states of the dielectric and which can move at the interface in the opposite way that occurring during injection. Two important parameters can be determined (i) the highest value of the relaxation time for the polarization mechanisms which are involved into the transient current and (ii) the height of the potential barrier W-0 at the metal-dielectric interface. The experimental data demonstrate that there is no threshold field for electron injection/extraction at a metal-dielectric interface.
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee. "
On the Width of the Thermally Stimulated Discharge Current Peak."
Proceedings of the 2010 Ieee International Conference on Solid Dielectrics. IEEE International Conference on Solid Dielectrics-ICSD. 2010.
AbstractThe Thermally Stimulated Discharge Current (TSDC) method is a very sensitive technique to analyze the movement of dipoles and of space charge (SC). To increase the selectivity of the method we have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. The experimental conditions can be selected so that the FTSDC is mainly determined by SC de-trapping. The aim of this paper is to analyze if the elementary peaks obtained by using the two methods can be assumed as elementary Debye peaks and to determine the best experimental conditions to obtain a narrow experimental peak which means to increase the selectivity of the method.
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee. "
The Study of the Molecular Movements in the Range of Glass Transition by the Final Thermally Stimulated Discharge Current Technique."
Proceedings of the 2010 Ieee International Conference on Solid Dielectrics. IEEE International Conference on Solid Dielectrics-ICSD. 2010.
AbstractThe electrical methods used to study the molecular movements are based on the movement of the dipoles under DC or AC electric field. We have proposed recently a combined measuring protocol to analyze charge injection/extraction, transport, trapping and de-trapping in polar or non-polar dielectric materials. The method is used here to analyze the molecular movements in polyimide in the temperature range from 293 to 572 K. A strong relaxation was observed around 402 K and a very weak relaxation around 345 K. This is the beta relaxation which is quite complex. As concern the behavior at high temperatures, above the beta relaxation, a high peak was observed that shifts continuously to higher temperatures as the charging temperature and/or the charging field increase. The maximum current of the peak increases and the temperature corresponding to the maximum current increases as the charging temperature and/or the charging field increase, given a direct observation of the so called cross-over effect related to current decay for sample charged at high fields and/or high temperatures.
Santos, J. P., A. M. Costa, J. P. Marques, M. C. Martins, P. Indelicato, and F. Parente. "
X-ray-spectroscopy analysis of electron-cyclotron-resonance ion-source plasmas."
Physical Review A. 82 (2010): 062516.
AbstractAnalysis of x-ray spectra emitted by highly charged ions in an electron-cyclotron-resonance ion source (ECRIS) may be used as a tool to estimate the charge-state distribution (CSD) in the source plasma. For that purpose, knowledge of the electron energy distribution in the plasma, as well as the most important processes leading to the creation and de-excitation of ionic excited states are needed. In this work we present a method to estimate the ion CSD in an ECRIS through the analysis of the x-ray spectra emitted by the plasma. The method is applied to the analysis of a sulfur ECRIS plasma.