Cipriano, F. "
A Stochastic variational principle for Burgers equation and its symmetries."
STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS II. Ed. R. } {Rebolledo. {TRENDS IN MATHEMATICS}. VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND: Catedra Presiden Analis Cualitat Sistemas Dinam Cuant; Univ Catol, Direcc Invest Postgrado; FONDECYT; ICCTICONICYT Exchange Programme, 2003. {29-46}.
Abstract{A stochastic variational principle for the classical Burgers equation is established. A solution of this equation can be considered as the velocity field of a stochastic process which is a minimum of an energy functional. A family of stochastic constants of the motion, determined in terms of the probability distribution of that process, yields the complete list of symmetries of the Burgers equation.}
Duarte, Vitor, João M. Lourenço, and José C. Cunha. "
Supporting on-line distributed monitoring and debugging."
On-Line Monitoring Systems and Computer Tool Interoperability. Commack, NY, USA: Nova Science Publishers, Inc., 2003. 43-59.
AbstractMonitoring systems have traditionally been developed with rigid objectives and functionalities, and tied to specific languages, libraries and run-time environments. There is a need for more flexible monitoring systems which can be easily adapted to distinct requirements. On-line monitoring has been considered as increasingly important for observation and control of a distributed application. In this paper we discuss monitoring interfaces and architectures which support more extensible monitoring and control services. We describe our work on the development of a distributed monitoring infrastructure, and illustrate how it eases the implementation of a complex distributed debugging architecture. We also discuss several issues concerning support for tool interoperability and illustrate how the cooperation among multiple concurrent tools can ease the task of distributed debugging.