Export 2488 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Rovisco, Ana, Andreia dos Santos, Tobias Cramer, Jorge Martins, Rita Branquinho, Hugo Águas, Beatrice Fraboni, Elvira Fortunato, Rodrigo Martins, Rui Igreja, and Pedro Barquinha. "{Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO 3 Nanowires through Microstructuration}." ACS Applied Materials & Interfaces. 12 (2020): 18421-18430. AbstractWebsite

The current trend for smart, self-sustainable, and multifunctional technology demands for the development of energy harvesters based on widely available and environmentally friendly materials. In this context, ZnSnO3 nanostructures show promising potential because of their high polarization, which can be explored in piezoelectric devices. Nevertheless, a pure phase of ZnSnO3 is hard to achieve because of its metastability, and obtaining it in the form of nanowires is even more challenging. Although some groups have already reported the mixing of ZnSnO3 nanostructures with polydimethylsiloxane (PDMS) to produce a nanogenerator, the resultant polymeric film is usually flat and does not take advantage of an enhanced piezoelectric contribution achieved through its microstructuration. Herein, a microstructured composite of nanowires synthesized by a seed-layer free hydrothermal route mixed with PDMS (ZnSnO3@PDMS) is proposed to produce nanogenerators. PFM measurements show a clear enhancement of d33 for single ZnSnO3 versus ZnO nanowires (23 ± 4 pm/V vs 9 ± 2 pm/V). The microstructuration introduced herein results in an enhancement of the piezoelectric effect of the ZnSnO3 nanowires, enabling nanogenerators with an output voltage, current, and instantaneous power density of 120 V, 13 $μ$A, and 230 $μ$W·cm-2, respectively. Even using an active area smaller than 1 cm2, the performance of this nanogenerator enables lighting up multiple LEDs and other small electronic devices, thus proving great potential for wearables and portable electronics.

Ribau, A. M., L. Ferrás, M. L. Morgado, M. Rebelo, and A. Afonso. "Analytical and numerical studies for slip flows of a generalised Phan-Thien-Tanner fluid." ZAMM Journal of applied mathematics and mechanics: Zeitschrift für angewandte Mathematik und Mechanik . 100.3 (2020).
Carreira, Paulo, Vasco Amaral, and Hans Vangheluwe Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems. Springer, 2020.
F.E, Cardoso, Batista; Arnaldo, V. Vassilenko, F. Serrano, and M. Ortigueira. "Idle Tone Detection in Biomedical Signals Using Time-Frequency Techniques." IFIP Advances in Information and Communication Technology. Ed. Technological Innovation Life Improvement. DoCEIS for 2020. Springer, 2020.
Singh, N., A. Amendola, F. Santos, G. Benzoni, and F. Fraternali Innovative dissipative devices with tensegrity architecture and super elastic behaviour for the seismic protection of structures. Proceedings of the International Conference on Structural Dynamic . Athens; Greece: EURODYN, 2020.
Viseu, F., and H. Rocha. "Interdisciplinary technological approaches from a mathematics education point of view." Science and mathematics education for 21st century citizens: challenges and ways forward. Eds. L. Leite, E. Oldham, A. Afonso, F. Viseu, L. Dourado, and H. Martinho. Nova Science Publishers, 2020. Abstract

Mathematics has a strong presence in the school curriculum, often justified by its usefulness in social life, in the world of work and by its connections with other sciences. This interdisciplinary connection, in particular when it requires constructing and refining mathematical models and discussing their applications to solve problems of other sciences, can assist students to understand why mathematics is so important in school. In the development of interdisciplinary activities, the characteristics of the tasks emerge as an important aspect. The emphasis is on the use of technological materials and the way they can support the development of concepts, provide different representations and support deeper understandings, and offer a multifaceted support to collect data and simulate experiences. Based on these assumptions, the aim of this chapter is to present, analyse and discuss tasks that promote interdisciplinary technological approaches from a mathematical point of view. In this chapter we assume interdisciplinarity as a complex construct, and in order to clarify its meaning we will discuss several types of conceptions, from multidisciplinary, to interdisciplinary, and to transdisciplinary. We will then address related concepts, such as modelling and STEM, highlighting similarities and differences between them, to reach an understanding of interdisciplinarity. In the process of the interdiciplinary approach, digital technologies arise as a central element. Based on a set of tasks on mathematics and on different sciences, we discuss what can change on an interdisciplinary approach to the teaching and learning of mathematical content and on the articulation between subjects.

Tekinerdogan, Bedir, Dominique Blouin, Hans Vangheluwe, Miguel Goulão, Paulo Carreira, and Vasco Amaral Multi-Paradigm Modelling Approaches for Cyber-Physical Systems. Elsevier, 2020.
Simões, J. T., L. C. Neves, Nunes A. Antão, and Costa N. M. da Guerra. "Reliability assessment of shallow foundations on undrained soils considering soil spatial variability." Computers and Geotechnics. 119 (2020).
Laronha, H., I. Carpinteiro, J. Portugal, A. Azul, M. Polido, K. T. Petrova, M. Salema-Oom, and J. CALDEIRA. "“Challenges in Matrix Metalloproteinases Inhibition." Biomolecules. 10 (2020): 717-778. DOI:10.3390/biom10050717.
Almeida, André F. O., António P. Ramos, Válter Lúcio, and Rui Marreiros. "Behavior of RC flat slabs with shear bolts under reversed horizontal cyclic loading." Structural Concrete. 21 (2020): 501-516. AbstractWebsite

Abstract An experimental work on reinforced concrete flat slab specimens to test the efficiency of postinstalled bolts, as punching shear reinforcement in resisting vertical and cyclic horizontal loads, was conducted and is presented in this paper. The test protocol consisted in increasing horizontal drifts combined with constant vertical load until failure. Two different detailing solutions for the shear reinforcement were considered, one using a radial distribution around the column and another using a cross distribution, being the results compared with a previously tested reference specimen. The dimensions of the specimens were 4.25 x 1.85 x 0.15 m3. The test setup used for these tests was developed by the research team and simulates the boundary conditions with already recognized good results. Postinstalled steel bolts were proven to be an efficient solution for strengthening of existing structures, improving the structural behavior, and the punching resistance.

Almeida, André F. O., Bruno Alcobia, Miguel Ornelas, Rui Marreiros, and António Pinho Ramos. "Behaviour of reinforced-concrete flat slabs with stirrups under reversed horizontal cyclic loading." Magazine of Concrete Research. 72 (2020): 339-356. AbstractWebsite

This paper describes the experimental campaign to study the behaviour of reinforced-concrete flat slab structures with steel stirrups as punching shear reinforcement, under combined vertical and horizontal cyclic loading. The vertical load was first applied and kept constant during the test, while, regarding the cyclic horizontal loading, imposed cyclic drifts were increased until failure. Four slab specimens with shear reinforcement were tested and the results compared to a control slab specimen without shear reinforcement. The studied variables were different shear reinforcement ratios and the number of stirrup layers. The slabs were 4·15 × 1·85 m2 and 0·15 m thick, connected to two steel half-columns. The test setup used was developed by the research team and aimed to simulate the boundary conditions of a flat slab, representing the slab between middle spans in one direction and between zero bending moment points in the other direction. Results show that the use of steel stirrups as shear reinforcement is very effective, increasing shear, drift and energy dissipation capacities. The obtained results were also compared to the provisions given by European and American codes.

Haque, S., M. Alexandre, MJ Mendes, H. Águas, E. Fortunato, and R. Martins. "Design of wave-optical structured substrates for ultra-thin perovskite solar cells." Applied Materials Today. 20 (2020). AbstractWebsite
n/a
Amarante dos Santos, F., C. Bedon, and A. Micheletti. "Explorative study on adaptive facades with superelastic antagonistic actuation." Structural Control and Health Monitoring. 27 (2020). AbstractWebsite
n/a
Singh, N., A. Amendola, F. Santos, G. Benzoni, and F. Fraternali. "Innovative dissipative devices with tensegrity architecture and super elastic behaviour for the seismic protection of structures." Proceedings of the International Conference on Structural Dynamic , EURODYN. Vol. 2. 2020. 3079-3085. Abstract
n/a
Vicente da Silva, M., N. Deusdado, and A. N. Antão. "Lower and upper bound limit analysis via the alternating direction method of multipliers." Computers and Geotechnics. 124 (2020): 103571. AbstractWebsite

Computational limit analysis methods invariably lead to the need to solve a mathematical programming problem. The alternating direction method of multipliers (ADMM) is one versatile and robust technique to solve non-linear convex optimization problems that has recently found applications in a wide range of fields. Its solution scheme, based on an operator splitting algorithm, is not only easy to implement but also suitable to efficiently solve large-scale variational problems. Starting from the ADMM framework, we derive a strict upper bound finite element formulation using a two-(primal)-field approximation, one for the velocity field and the other for the plastic strain rate field. Next, following a similar approach, we develop a novel strict lower bound formulation. Here, the two-(primal)-field model is based on a redundant approximation of the stress field. Duality principles are then explored in order to unify these two formulations.The effectiveness of this approach is demonstrated on test problems and, to conclude, some considerations are made about the performance results.

Singh, N., A. Amendola, F. Santos, G. Benzoni, and F. Fraternali. "Mechanical response of tensegrity dissipative devices incorporating shape memory alloys." IOP Conference Series: Materials Science and Engineering. Vol. 999. 2020. Abstract
n/a
Silva, Teresa P., João X. Matos, Daniel de Oliveira, João P. Veiga, Igor Morais, Pedro Gonçalves, and Lu{\'ıs Albardeiro. "Mineral Inventory of the Algares 30-Level Adit, Aljustrel Mine, Iberian Pyrite Belt, Portugal." Minerals. 10 (2020): 853. Abstract
n/a
Sanchez-Sobrado, O., MJ Mendes, T. Mateus, J. Costa, D. Nunes, H. Aguas, E. Fortunato, and R. Martins. "Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cells." Solar Energy. 196 (2020): 92-98. AbstractWebsite
n/a
Santos, J. P., J. Machado, Guojie Bian, Nancy Paul, M. Trassinelli, P. Amaro, M. Guerra, C. I. Szabo, A. Gumberidze, J. M. Isac, J. P. Santos, J. P. Desclaux, and P. Indelicato. "Reference-free measurements of the 1s2s2p2P1/2,3/2o\rightarrow1s22s2S1/2 and 1s2s2p4P5/2\rightarrow1s22s2S1/2 transition energies and widths in lithiumlike sulfur and argon ions." Physical Review A (2020). AbstractWebsite
n/a
Centeno, P., M. F. Alexandre, M. Chapa, JV Pinto, J. Deuermeier, T. Mateus, E. Fortunato, R. Martins, H. Águas, and MJ Mendes. "Self-Cleaned Photonic-Enhanced Solar Cells with Nanostructured Parylene-C." Advanced Materials Interfaces. 7 (2020). AbstractWebsite
n/a
Outis, Mani, Vitor Rosa, César AT Laia, João Carlos Lima, Sónia Barroso, Ana Luísa Carvalho, Maria José Calhorda, and Teresa Avilés. "Synthesis, Crystal Structure, and DFT Study of Two New Dinuclear Copper(I) Complexes Bearing Ar-BIAN Ligands Functionalized with NO2 Groups." European Journal of Inorganic Chemistry. 2020 (2020): 2900-2911. AbstractWebsite

{Two new bis(aryl-imino)-acenaphthene, Ar-BIAN (Ar = 2