Publications

Export 15 results:
Sort by: Author Title Type [ Year  (Desc)]
In Press
Fernandes, Cláudio, and Oleksiy Karlovych. "On pseudodifferential operators with slowly oscillating symbols on variable Lebesgue spaces with Khvedelidze weights." Achievements and Challenges in the Field of Convolution Operators. The Yuri Karlovich Anniversary Volume. Eds. Albrecht Böttcher, Oleksiy Karlovych, Eugene Shargorodsky, and Ilya Spitkovsky. In Press.
2022
Karlovych, Oleksiy, and Eugene Shargorodsky. "Toeplitz operators with non-trivial kernels and non-dense ranges on weak Hardy spaces." Toeplitz Operators and Random Matrices. In Memory of Harold Widom. Operator Theory: Advances and Applications, vol. 289. Eds. Estelle Basor, Albrecht ¨Böttcher, and Torsten Ehrhardt. Birkhäuser, 2022. 463-476.
2021
Bastos, Maria Amélia, Luís Castro, and Alexei Yu. Karlovich(eds.) Operator Theory, Functional Analysis and Applications. Basel: Birkhäuser, 2021.
2018
Karlovich, Alexei Yu., and Eugene Shargorodsky. "More on the density of analytic polynomials in abstract Hardy spaces." The Diversity and Beauty of Applied Operator Theory. Operator Theory: Advances and Applications, vol. 268. Eds. Albrecht Böttcher, Daniel Potts, Peter Stollman, and David Wenzel. Basel: Birkhäuser, 2018. 319-329.
André, Carlos, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa(Eds.) Operator Theory, Operator Algebras, and Matrix Theory. Basel: Birkhäuser, 2018.Website
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Semi-Fredholmness of weighted singular integral operators with shifts and slowly oscillating data." Operator Theory, Operator Algebras, and Matrix Theory. Operator Theory: Advances and Applications, vol. 267. Eds. Carlos André, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa. Basel: Birkhäuser, 2018. 221-246.
2017
Bini, Dario, Torsten Ehrhardt, Alexei Yu. Karlovich, and Ilya M. Spitkovsky(eds.) Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics. The Albrecht Böttcher Anniversary Volume. Basel: Birkhäuser Basel, 2017.Website
2014
Karlovich, Alexei Yu. "Boundedness of pseudodifferential operators on Banach function spaces." Operator Theory, Operator Algebras and Applications. Operator Theory: Advances and Applications, 242. Eds. Maria Amélia Bastos, Amarino Lebre, Stefan Samko, and Ilya M. Spitkovsky. Basel: Birkhäuser/Springer, 2014. 185-195. Abstract

We show that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space \(X(\mathbb{R}^n)\) and on its associate space \(X'(\mathbb{R}^n)\), then a pseudodifferential operator \(\operatorname{Op}(a)\) is bounded on \(X(\mathbb{R}^n)\) whenever the symbol \(a\) belongs to the Hörmander class \(S_{\rho,\delta}^{n(\rho-1)}\) with \(0<\rho\le 1\), \(0\le\delta<1\) or to the the Miyachi class \(S_{\rho,\delta}^{n(\rho-1)}(\varkappa,n)\) with \(0\le\delta\le\rho\le 1\), \(0\le\delta<1\), and \(\varkappa>0\). This result is applied to the case of variable Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^n)\).

Karlovich, Alexei Yu., and Ilya M. Spitkovsky. "The Cauchy singular integral operator on weighted variable Lebesgue spaces." Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Operator Theory: Advances and Applications, 236. Eds. Manuel Cepedello Boiso, Håkan Hedenmalm, Marinus A. Kaashoek, Alfonso Montes Rodríguez, and Sergei Treil. Basel: Birkhäuser, 2014. 275-291. Abstract

Let \(p:\mathbb{R}\to(1,\infty)\) be a globally log-Hölder continuous variable exponent and \(w:\mathbb{R}\to[0,\infty]\) be a weight. We prove that the Cauchy singular integral operator \(S\) is bounded on the weighted variable Lebesgue space \(L^{p(\cdot)}(\mathbb{R},w)=\{f:fw\in L^{p(\cdot)}(\mathbb{R})\}\) if and only if the weight \(w\) satisfies $$ \sup_{-\infty < a < b < \infty} \frac{1}{b-a} \|w\chi_{(a,b)}\|_{p(\cdot)} \|w^{-1}\chi_{(a,b)}\|_{p'(\cdot)}<\infty \quad (1/p(x)+1/p'(x)=1). $$

2010
Karlovich, Alexei Yu. "Singular integral operators on variable Lebesgue spaces over arbitrary Carleson curves." Topics in Operator Theory: Operators, Matrices and Analytic Functions, Vol. 1. Operator Theory: Advances and Applications, 202. Eds. JA Ball, V. Bolotnikov, JW Helton, L. Rodman, and IM Spitkovsky. Basel: Birkhäuser, 2010. 321-336. Abstract

In 1968, Israel Gohberg and Naum Krupnik discovered that local spectra of singular integral operators with piecewise continuous coefficients on Lebesgue spaces \(L^p(\Gamma)\) over Lyapunov curves have the shape of circular arcs. About 25 years later, Albrecht Böttcher and Yuri Karlovich realized that these circular arcs metamorphose to so-called logarithmic leaves with a median separating point when Lyapunov curves metamorphose to arbitrary Carleson curves. We show that this result remains valid in a more general setting of variable Lebesgue spaces \(L^{p(\cdot)}(\Gamma)\) where \(p:\Gamma\to(1,\infty)\) satisfies the Dini-Lipschitz condition. One of the main ingredients of the proof is a new condition for the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with weights related to oscillations of Carleson curves.

2009
Karlovich, Alexei Yu. "Asymptotics of Toeplitz matrices with symbols in some generalized Krein algebras." Modern Analysis and Applications: Mark Krein Centenary Conference, Vol. 1. Operator Theory Advances and Applications, 190. Eds. V. Adamyan, Y. Berezansky, I. Gohberg, M. Gorbachuk, V. Gorbachuk, A. Kochubei, H. Langer, and G. Popov. Basel: Birkhäuser, 2009. 341-359. Abstract

Let \(\alpha,\beta\in(0,1)\) and
\[
K^{\alpha,\beta}:=\left\{a\in L^\infty(\mathbb{T}):\
\sum_{k=1}^\infty |\widehat{a}(-k)|^2 k^{2\alpha}<\infty,\
\sum_{k=1}^\infty |\widehat{a}(k)|^2 k^{2\beta}<\infty
\right\}.
\]
Mark Krein proved in 1966 that \(K^{1/2,1/2}\) forms a Banach algebra. He also observed that this algebra is important in the asymptotic theory of finite Toeplitz matrices. Ten years later, Harold Widom extended
earlier results of Gabor Szegö for scalar symbols and established the asymptotic trace formula
\[
\operatorname{trace}f(T_n(a))=(n+1)G_f(a)+E_f(a)+o(1)
\quad\text{as}\ n\to\infty
\]
for finite Toeplitz matrices \(T_n(a)\) with matrix symbols \(a\in K^{1/2,1/2}_{N\times N}\). We show that if \(\alpha+\beta\ge 1\) and \(a\in K^{\alpha,\beta}_{N\times N}\), then the Szegö-Widom asymptotic trace formula holds with \(o(1)\) replaced by \(o(n^{1-\alpha-\beta})\).

2008
Karlovich, Alexei Yu. "Higher order asymptotic formulas for traces of Toeplitz matrices with symbols in Hölder-Zygmund spaces." Recent Advances in Matrix and Operator Theory. Operator Theory: Advances and Applications, 179. Eds. Joseph A. Ball, Yuli Eidelman, William J. Helton, Vadim Olshevsky, and James Rovnyak. Basel: Bikhäuser, 2008. 185-196. Abstract

We prove a higher order asymptotic formula for traces of finite block Toeplitz matrices with symbols belonging to Hölder-Zygmund spaces. The remainder in this formula goes to zero very rapidly for very smooth symbols. This formula refines previous asymptotic trace formulas by Szegő and Widom and complement higher order asymptotic formulas for determinants of finite block Toeplitz matrices due to Böttcher and Silbermann.

Karlovich, Alexei Yu. "Higher-order asymptotic formulas for Toeplitz matrices with symbols in generalized Hölder spaces." Operator Algebra, Operator Theory and Applications. Operator Theory Advances and Applications, 181. Eds. MA Bastos, I. Gohberg, AB Lebre, and FO Speck. Basel: Birkhäuser, 2008. 207-228. Abstract

We prove higher-order asymptotic formulas for determinants and traces of finite block Toeplitz matrices generated by matrix functions belonging to generalized Hölder spaces with characteristic functions from the Bari-Stechkin class. We follow the approach of Böttcher and Silbermann and generalize their results for symbols in standard Hölder spaces.

2007
Böttcher, Albrecht, Alexei Yu. Karlovich, and Bernd Silbermann. "Generalized Krein algebras and asymptotics of Toeplitz determinants." Methods of Functional Analysis and Topology. 13.2 (2007): 236-261. AbstractWebsite

We give a survey on generalized Krein algebras \(K_{p,q}^{\alpha,\beta}\) and their applications to Toeplitz determinants. Our methods originated in a paper by Mark Krein of 1966, where he showed that \(K_{2,2}^{1/2,1/2}\) is a Banach algebra. Subsequently, Widom proved the strong Szeg\H{o} limit theorem for block Toeplitz determinants with symbols in \((K_{2,2}^{1/2,1/2})_{N\times N}\) and later two of the authors studied symbols in the generalized Krein algebras \((K_{p,q}^{\alpha,\beta})_{N\times N}\), where \(\lambda:=1/p+1/q=\alpha+\beta\) and \(\lambda=1\). We here extend these results to \(0<\lambda<1\). The entire paper is based on fundamental work by Mark Krein, ranging from operator ideals through Toeplitz operators up to Wiener-Hopf factorization.

2003
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Invertibility of functional operators with slowly oscillating non-Carleman shifts." Singular Integral Operators, Factorization and Applications. Operator Theory: Advances and Applications, 142. Eds. Albrecht Böttcher, Marinus A. Kaashoek, Amarino Brites Lebre, António Ferreira dos Santos, and Frank-Olme Speck. Basel: Birkhäuser, 2003. 147-174. Abstract

We prove criteria for the invertibility of the binomial functional operator
\[
A=aI-bW_\alpha
\]
in the Lebesgue spaces \(L^p(0,1)\), \( 1 < p < \infty\), where \(a\) and \(b\) are continuous functions on \((0,1)\), \(I\) is the identity operator, \(W_\alpha\) is the shift operator, \(W_\alpha f=f\circ\alpha\), generated by a non-Carleman shift \(\alpha:[0,1]\to[0,1]\) which has only two fixed points \(0\) and \(1\). We suppose that \(\log\alpha'\) is bounded and continuous on \((0,1)\) and that \(a,b,\alpha'\) slowly oscillate at \(0\) and \(1\). The main difficulty connected with slow oscillation is overcome by using the method of limit operators.