Publications

Export 57 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Coelho, J., R. F. Correia, S. Silvestre, T. Pinheiro, A. C. Marques, R. M. P. Correia, J. V. Pinto, E. Fortunato, and R. Martins, "{Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications}", Microchimica Acta, vol. 190, no. 1, pp. 1–10, 2023. Abstract

Laser-induced graphene (LIG) is as a promising material for flexible microsupercapacitors (MSCs) due to its simple and cost-effective processing. However, LIG-MSC research and production has been centered on non-sustainable polymeric substrates, such as polyimide. In this work, it is presented a cost-effective, reproducible, and robust approach for the preparation of LIG structures via a one-step laser direct writing on chromatography paper. The developed strategy relies on soaking the paper in a 0.1 M sodium tetraborate solution (borax) prior to the laser processing. Borax acts as a fire-retardant agent, thus allowing the laser processing of sensitive substrates that other way would be easily destroyed under the high-energy beam. LIG on paper exhibiting low sheet resistance (30 $Ømega$ sq−1) and improved electrode/electrolyte interface was obtained by the proposed method. When used as microsupercapacitor electrodes, this laser-induced graphene resulted in specific capacitances of 4.6 mF cm−2 (0.015 mA cm−2). Furthermore, the devices exhibit excellent cycling stability (> 10,000 cycles at 0.5 mA cm−2) and good mechanical properties. By connecting the devices in series and parallel, it was also possible to control the voltage and energy delivered by the system. Thus, paper-based LIG-MSC can be used as energy storage devices for flexible, low-cost, and portable electronics. Additionally, due to their flexible design and architecture, they can be easily adapted to other circuits and applications with different power requirements. Graphical Abstract: [Figure not available: see fulltext.]

Pinheiro, A., A. Ruivo, M. Ferro, J. V. Pinto, J. Deuermeier, T. Mateus, A. Santa, M. J. Mendes, R. Martins, S. Gago, C. A. T. Laia, and Á. Hugo, {Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics}, , 2023. Abstract
n/a
2022
Correia, R., J. Deuermeier, M. R. Correia, J. {Vaz Pinto}, J. Coelho, E. Fortunato, and R. Martins, "{Biocompatible Parylene-C Laser-Induced Graphene Electrodes for Microsupercapacitor Applications}", ACS Applied Materials {&} Interfaces, vol. 14, no. 41: American Chemical Society, pp. 46427–46438, oct, 2022. AbstractWebsite
n/a
Silva, D., C. S. Monteiro, S. O. Silva, O. Frazão, J. V. Pinto, M. Raposo, P. A. Ribeiro, and S. Sério, "{Sputtering Deposition of TiO2 Thin Film Coatings for Fiber Optic Sensors}", Photonics, vol. 9, no. 5: MDPI AG, pp. 342, may, 2022. Abstract

Thin films of titanium dioxide (TiO2) and titanium (Ti) were deposited onto glass and optical fiber supports through DC magnetron sputtering, and their transmission was characterized with regard to their use in optical fiber-based sensors. Deposition parameters such as oxygen partial pressure, working pressure, and sputtering power were optimized to attain films with a high reflectance. The films deposited on glass supports were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Regarding the deposition parameters, all three parameters were tested simultaneously, changing the working pressure, the sputtering power, and the oxygen percentage. It was possible to conclude that a lower working pressure and higher applied power lead to films with a higher reflectance. Through the analysis of the as-sputtered thin films using X-ray diffraction, the deposition of both Ti and TiO2 films was confirmed. To study the applicability of TiO2 and Ti in fiber sensing, several thin films were deposited in single mode fibers (SMFs) using the sputtering conditions that revealed the most promising results in the glass supports. The sputtered TiO2 and Ti thin films were used as mirrors to increase the visibility of a low-finesse Fabry–Perot cavity and the possible sensing applications were studied.

Firmino, R., E. Carlos, J. V. Pinto, J. Deuermeier, R. Martins, E. Fortunato, P. Barquinha, and R. Branquinho, "{Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductors}", Nanomaterials, vol. 12, no. 13, pp. 2167, jun, 2022. AbstractWebsite

{\textless}p{\textgreater}Indium oxide (In2O3)-based transparent conducting oxides (TCOs) have been widely used and studied for a variety of applications, such as optoelectronic devices. However, some of the more promising dopants (zirconium, hafnium, and tantalum) for this oxide have not received much attention, as studies have mainly focused on tin and zinc, and even fewer have been explored by solution processes. This work focuses on developing solution-combustion-processed hafnium (Hf)-doped In2O3 thin films and evaluating different annealing parameters on TCO's properties using a low environmental impact solvent. Optimized TCOs were achieved for 0.5 M{%} Hf-doped In2O3 when produced at 400 °C, showing high transparency in the visible range of the spectrum, a bulk resistivity of 5.73 × 10−2 $Ømega$.cm, a mobility of 6.65 cm2/V.s, and a carrier concentration of 1.72 × 1019 cm−3. Then, these results were improved by using rapid thermal annealing (RTA) for 10 min at 600 °C, reaching a bulk resistivity of 3.95 × 10 −3 $Ømega$.cm, a mobility of 21 cm2/V.s, and a carrier concentration of 7.98 × 1019 cm−3, in air. The present work brings solution-based TCOs a step closer to low-cost optoelectronic applications.{\textless}/p{\textgreater}

2020
Centeno, P., M. F. Alexandre, M. Chapa, J. V. Pinto, J. Deuermeier, T. Mateus, E. Fortunato, R. Martins, H. Águas, and M. J. Mendes, {Self-Cleaned Photonic-Enhanced Solar Cells with Nanostructured Parylene-C}, , vol. 2000264, pp. 1–9, 2020. Abstract

Abstract Photonic front-coatings with self-cleaning properties are presented as means to enhance the efficiency and outdoor performance of thin-film solar cells, via optical enhancement while simultaneously minimizing soiling-related losses. This is achieved by structuring parylene-C transparent encapsulants using a low-cost and highly-scalable colloidal-lithography methodology. As a result, superhydrophobic surfaces with broadband light-trapping properties are developed. The optimized parylene coatings show remarkably high water contact angles of up to 165.6° and extremely low adhesion, allowing effective surface self-cleaning. The controlled nano/micro-structuring of the surface features also generates strong anti-reflection and light scattering effects, corroborated by numeric electromagnetic modeling, which lead to pronounced photocurrent enhancement along the UV?vis?IR range. The impact of these photonic-structured encapsulants is demonstrated on nanocrystalline silicon solar cells, that show short-circuit current density gains of up to 23.6%, relative to planar reference cells. Furthermore, the improvement of the devices' angular response enables an enhancement of up to 35.2% in the average daily power generation.

2017
Otero, V., M. F. Campos, J. V. Pinto, M. Vilarigues, L. Carlyle, and M. J. Melo, "{Barium, zinc and strontium yellows in late 19th-early 20th century oil paintings}", Heritage Science, vol. 5, no. 1, 2017. Abstract

© 2017 The Author(s). This work focuses on the study of the 19th century yellow chromate pigments based on barium (BaCrO4), zinc (4ZnCrO4K2O3H2O) and strontium (SrCrO4). These pigments, which are reported to shift in hue and darken, have been found in 19th century artworks. A better understanding of their historic manufacture will contribute to the visual/chemical interpretation of change in these colours. Research was carried out on the Winsor & Newton (W&N) 19th century archive database providing a unique insight into their manufacturing processes. One hundred and three production records were found, 69% for barium, 25% for zinc and 6% for strontium chromates, mainly under the names Lemon, Citron and Strontian Yellow, respectively. Analysis of the records shows that each pigment is characterised by only one synthetic pathway. The low number of records found for the production of strontium chromate suggests W&N was not selling this pigment formulation on a large scale. Furthermore, contrary to what the authors have discovered for W&N chrome yellow pigments, extenders were not added to these pigment formulations, most probably due to their lower tinting strength (TS). The latter was calculated in comparison to pure chrome yellow (PbCrO4, 100% TS) resulting in 92% for barium, 65% for zinc potassium and 78% for strontium chromate pigments. This indicates that W&N was probably using extenders primarily to adjust pigment properties and not necessarily as a means to reduce their costs. Pigment reconstructions following the main methods of synthesis were characterised by complementary analytical techniques: Fibre optic reflectance spectroscopy, X-ray diffraction, micro-Raman and micro-Fourier transform infrared spectroscopies. These pigments can be clearly distinguished on the basis of their infrared CrO42-asymmetric stretching fingerprint profile (between 1000 and 700 cm-1) and of their Raman CrO42-stretching bands (850-950 cm-1). This enabled their identification in historic paint samples: a tube of late 19th century W&N Lemon Yellow oil paint and micro-samples from paintings by three Portuguese painters, António Silva Porto (1850-1893), João Marques de Oliveira (1853-1927) and Amadeo de Souza-Cardoso (1887-1918). The good correlation found between the reconstructions and historic samples validates their use as reference materials for future photochemical studies.

Otero, V., J. V. V. Pinto, L. Carlyle, M. Vilarigues, M. Cotte, and M. J. J. Melo, "{Nineteenth century chrome yellow and chrome deep from Winsor & NewtonTM}", Studies in Conservation, vol. 62, no. 3, pp. 123–149, 2017. AbstractWebsite

The Winsor & NewtonTM (W&N) nineteenth century archive database includes digitised images of hand- written instructions and workshop notes for the manufacture of their artists' materials. For the first time, all 183 production records for yellow lead chromate pigments were studied and evaluated. They revealed that W&N produced essentially three pigment types: lemon/pale based on mixed crystals of lead chromate and lead sulphate [Pb(Cr,S)O4]; middle on pure monoclinic lead chromate [PbCrO4]; and deep that contains the latter admixed with basic lead chromate [Pb2CrO5]; accounting for 53, 22, and 21% of the production, respectively. Production records for primrose (4%) were also included since the formulation results in mixed crystals with a high percentage of lead sulphate, which, according to the literature, leaves it more prone to degradation. Each pigment type is characterised by only one or two main synthetic pathways; process variations reveal a systematic and thorough search for a high-quality durable product. A comparison of the chemical composition of pigment reconstructions with early W&N oil paint tubes showed that their records entitled ‘pale' and ‘lemon' correlated with the pigment in their tube labelled chrome yellow and, ‘middle' and ‘deep' with the label chrome deep. Lemon and middle pigment formulations were made into oil paints to assess their relative photo-stability. The degradation process was followed by colorimetry and was studied by synchrotron radiation-based techniques. Based on the X-ray absorption spectroscopy data, the possibility for creating a stability index for chrome yellows is discussed. Keywords:

Pardal, T., S. Messias, M. Sousa, A. S. R. Machado, C. M. Rangel, D. Nunes, J. V. Pinto, R. Martins, and M. N. {Da Ponte}, "{Syngas production by electrochemical CO2 reduction in an ionic liquid based-electrolyte}", Journal of CO2 Utilization, vol. 18, 2017. Abstract

© 2017 Elsevier Ltd. Graphical abstract: The electrochemical reduction of carbon dioxide dissolved in a solution of water and ionic liquid as electrolyte, at high-pressure and near room-temperature, is reported. This work describes an electro-deposition strategy for the preparation of copper substrate cathodes, coated with bimetallic zinc-copper films, obtained from deep-eutectic solvents plating baths. The prepared bimetallic cathodes showed electrochemical activity for syngas production in 1-butyl-3-methylimidazolium triflate, with yields of 85N$μ$L (normal microliter)cm−2C−1/170N$μ$Lcm−2h−1, high selectivities, tunable H2/CO ratio and low energetic requirements.

Goswami, S., S. Nandy, A. N. Banerjee, A. Kiazadeh, G. R. Dillip, J. V. Pinto, S. W. Joo, R. Martins, and E. Fortunato, "{“Electro-Typing” on a Carbon-Nanoparticles-Filled Polymeric Film using Conducting Atomic Force Microscopy}", Advanced Materials, vol. 29, no. 47, 2017. Abstract

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Next-generation electrical nanoimprinting of a polymeric data sheet based on charge trapping phenomena is reported here. Carbon nanoparticles (CNPs) (waste carbon product) are deployed into a polymeric matrix (polyaniline) (PANI) as a charge trapping layer. The data are recorded on the CNPs-filled polyaniline device layer by “electro-typing” under a voltage pulse (VET, from ±1 to ±7 V), which is applied to the device layer through a localized charge-injection method. The core idea of this device is to make an electrical image through the charge trapping mechanism, which can be “read” further by the subsequent electrical mapping. The density of stored charges at the carbon–polyaniline layer, near the metal/polymer interface, is found to depend on the voltage amplitude, i.e., the number of injected charge carriers. The relaxation of the stored charges is studied by different probe voltages and for different devices, depending on the percolation of the CNPs into the PANI. The polymeric data sheet retains the recorded data for more than 6 h, which can be refreshed or erased at will. Also, a write–read–erase–read cycle is performed for the smallest “bit” of stored information through a single contact between the probe and the device layer.

2016
Kardarian, K., D. Nunes, P. {Maria Sberna}, A. Ginsburg, D. A. Keller, J. {Vaz Pinto}, J. Deuermeier, A. Y. Anderson, A. Zaban, R. Martins, and E. Fortunato, "{Effect of Mg doping on Cu2O thin films and their behavior on the TiO2/Cu2O heterojunction solar cells}", Solar Energy Materials and Solar Cells, vol. 147, pp. 27–36, apr, 2016. AbstractWebsite

Abstract The present work shows the effect of magnesium doping on structural, optoelectrical and electrical properties of Cu2O thin films prepared by spray pyrolysis. The variation in the concentration of Mg shows significant impact on the final thin film properties, whereas the film doped with 0.5 at{%} of Mg exhibited major property improvements in comparison with the undoped thin film and among the other concentrations tested. This condition was further applied for the deposition of an absorber layer in a heterojunction solar cell array with a gradient in thicknesses of active layers to investigate the impact of changing thicknesses on the PV parameters of the solar cell. TiO2 was used as a window layer and the 0.5 at{%} Cu2O doped film as an absorber layer. The produced heterojunction solar cell array was further exposed to a rapid thermal annealing treatment. The I–V measurements show an open circuit voltage of up to 365 mV and a short circuit current density, which is dependent on absorber layer thickness, and reaches to a maximum value of 0.9 mA/cm2.

Gonçalves, A., J. Resende, A. C. Marques, J. V. Pinto, D. Nunes, A. Marie, R. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, "Smart optically active VO nanostructured layers applied in roof-type ceramic tiles for energy efficiency", Solar Energy Materials & Solar Cells, vol. 150, pp. 1-9, 2016.
Nunes, D., A. Pimentel, J. V. Pinto, T. R. Calmeiro, S. Nandy, P. Barquinha, L. Pereira, P. A. Carvalho, E. Fortunato, and R. Martins, "{Photocatalytic behavior of TiO2 films synthesized by microwave irradiation}", Catalysis Today, vol. 278, 2016. Abstract

© 2015 Elsevier B.V. Titanium dioxide was synthesized on glass substrates from titanium (IV)isopropoxide and hydrochloride acid aqueous solutions through microwave irradiation using as seed layer either fluorine-doped crystalline tin oxide (SnO2:F) or amorphous tin oxide (a-SnOx). Three routes have been followed with distinct outcome: (i) equimolar hydrochloride acid/water proportions (1HCl:1water) resulted in nanorod arrays for both seed layers; (ii) higher water proportion (1HCl:3water) originated denser films with growth yield dependent on the seed layer employed; while (iii) higher acid proportion (3HCl:1water) hindered the formation of TiO2. X-ray diffraction (XRD) showed that the materials crystallized with the rutile structure, possibly with minute fractions of brookite and/or anatase. XRD peak inversions observed for the materials synthesized on crystalline seeds pointed to preferred crystallographic orientation. Electron diffraction showed that the especially strong XRD peak inversions observed for TiO2 grown from the 1HCl:3water solution on SnO2:F originated from a [001] fiber texture. Transmittance spectrophotometry showed that the materials with finer structure exhibited significantly higher optical band gaps. Photocatalytic activity was assessed from methylene blue degradation, with the 1HCl:3water SnO2:F material showing remarkable degradability performance, attributed to a higher exposure of (001) facets, together with stability and reusability.

2015
Morais, A. R. C., J. V. Pinto, D. Nunes, L. B. Roseiro, M. C. Oliveira, E. Fortunato, and R. Bogel-Łukasik, "{Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification}", ACS Sustainable Chemistry {&} Engineering: American Chemical Society, dec, 2015. AbstractWebsite
n/a
Nunes, D., A. Pimentel, J. V. Pinto, T. R. Calmeiro, S. Nandy, P. Barquinha, L. Pereira, P. A. Carvalho, E. Fortunato, and R. Martins, "Photocatalytic behavior of TiO2 films synthesized by microwave irradiation", Catalysis Today, 2015. AbstractWebsite

Titanium dioxide was synthesized on glass substrates from titanium (IV)isopropoxide and hydrochloride acid aqueous solutions through microwave irradiation using as seed layer either fluorine-doped crystalline tin oxide (SnO2:F) or amorphous tin oxide (a-SnOx). Three routes have been followed with distinct outcome: (i) equimolar hydrochloride acid/water proportions (1HCl:1water) resulted in nanorod arrays for both seed layers; (ii) higher water proportion (1HCl:3water) originated denser films with growth yield dependent on the seed layer employed; while (iii) higher acid proportion (3HCl:1water) hindered the formation of TiO2. X-ray diffraction (XRD) showed that the materials crystallized with the rutile structure, possibly with minute fractions of brookite and/or anatase. XRD peak inversions observed for the materials synthesized on crystalline seeds pointed to preferred crystallographic orientation. Electron diffraction showed that the especially strong XRD peak inversions observed for TiO2 grown from the 1HCl:3water solution on SnO2:F originated from a [001] fiber texture. Transmittance spectrophotometry showed that the materials with finer structure exhibited significantly higher optical band gaps. Photocatalytic activity was assessed from methylene blue degradation, with the 1HCl:3water SnO2:F material showing remarkable degradability performance, attributed to a higher exposure of (001) facets, together with stability and reusability.

Nunes, D., L. Santos, P. Duarte, A. Pimentel, J. V. Pinto, P. Barquinha, P. A. Carvalho, E. Fortunato, and R. Martins, "Room Temperature Synthesis of Cu2O Nanospheres: Optical Properties and Thermal Behavior", Microscopy and Microanalysis, vol. 21, issue 01, pp. 11, 2015. Abstract

The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals. FAU - Nunes, Daniela

Santos, L., P. Wojcik, J. V. Pinto, E. Elangovan, J. Viegas, L. Í. Pereira, R. Martins, and E. Fortunato, "Structure and Morphologic Influence of WO3 Nanoparticles on the Electrochromic Performance of Dual-Phase a-WO3/WO3 Inkjet Printed Films", Advanced Electronic Materials, pp. n/a-n/a, 2015. AbstractWebsite

The optimization of tungsten trioxide (WO3) nanoparticles produced via hydrothermal synthesis for application in electrochromic (EC) devices is reported. The structure and morphology of the nanoparticles are controlled by changing the acidity of the aqueous solvent added to the sol-gel precursor (peroxopolytungstic acid) during synthesis. Orthorhombic hydrated WO3 nanorods or monoclinic WO3 nanoslabs are obtained when HCl is added, while synthesis only in aqueous medium results in a mixture of both types of polymorphs. Dual-phase thin films are processed by inkjet printing deposition of the nanoparticles in flexible polyethylene terephthalate substrate with indium tin oxide coating (ITO PET) followed by the deposition of the precursor solution. When compared with purely amorphous tungsten oxide films, the dual phase ones present higher optical densities and improved capacity, and cyclability stability. The best results, obtained for orthorhombic hydrated nanoparticles (ortho-WO3·0.33H2O), are due to its high surface area and improved conductivity. Additionally, the ex situ X-ray diffraction (XRD) lithiation studies show evidence of a higher distortion of the monoclinic when compared with the orthorhombic crystallographic structure, which contribute to the inferior EC performance. These results validate the use of inkjet printing deposition with low processing temperatures for EC dual-phase thin films containing optimized nanoparticles which are compatible with low-cost substrates.

Nunes, D., T. R. Calmeiro, S. Nandy, J. V. Pinto, A. Pimentel, P. Barquinha, P. A. Carvalho, J. C. Walmsley, E. Fortunato, and R. Martins, "{Charging effects and surface potential variations of Cu-based nanowires}", Thin Solid Films: Elsevier B.V., pp. 1–9, 2015. AbstractWebsite

The presentwork reports charging effects and surface potential variations in pure copper, cuprous oxide and cu- pric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved throughmicrowave irradiation and cupric oxide nanowireswere obtained via furnace annealing in at- mospheric conditions. Structural characterization of the nanowireswas carried out byX-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO2 dielectric substrate. Both the probe/nanowire capacitance as well as the sub- strate polarization increased with the applied bias. Cu2O and CuO nanowires behaved distinctively during the EFMmeasurements in accordancewith their band gap energies. Thework functions(WF) of the Cu-based nano- wires, obtained by KPFM measurements, yieldedWFCuO N WFCu N WFCu2O

Kiazadeh, A., D. Salgueiro, R. Branquinho, J. Pinto, H. L. Gomes, P. Barquinha, R. Martins, and E. Fortunato, "{Operational stability of solution based zinc tin oxide/SiO2 thin film transistors under gate bias stress}", APL Materials, vol. 3, no. 6, pp. 062804, 2015. AbstractWebsite

In this study, we report solution-processed amorphous zinc tin oxide transistors exhibiting high operational stability under positive gate bias stress, translated by a recoverable threshold voltage shift of about 20{%} of total applied stress voltage. Under vacuum condition, the threshold voltage shift saturates showing that the gate-bias stress is limited by trap exhaustion or balance between trap filling and emptying mechanism. In ambient atmosphere, the threshold voltage shift no longer saturates, stability is degraded and the recovering process is impeded. We suggest that the trapping time during the stress and detrapping time in recovering are affected by oxygen adsorption/desorption processes. The time constants extracted from stretched exponential fitting curves are ≈106 s and 105 s in vacuum and air, respectively.

Nunes, D., A. Pimentel, J. V. Pinto, T. R. Calmeiro, S. Nandy, P. Barquinha, L. Pereira, P. A. Carvalho, E. Fortunato, and R. Martins, "{Photocatalytic behavior of TiO2 films synthesized by microwave irradiation}", Catalysis Today: Elsevier B.V., 2015. AbstractWebsite
n/a
2014
Miguel, C., J. V. Pinto, M. Clarke, and M. J. Melo, "{The alchemy of red mercury sulphide: The production of vermilion for medieval art}", Dyes and Pigments, vol. 102: Elsevier Ltd, pp. 210–217, mar, 2014. AbstractWebsite

abstract Vermilion red, mercury sulphide (a-HgS), was one of the most important reds in art and its use as a pigment dates back to Antiquity. In medieval Europe, it could be mined as cinnabar, or produced as vermilion by heating mercury with sulphur. This work aims to study the production of synthetic vermilion as a medieval pigment and to confirm which was the source (mineral or artificial) of the reds used in Portuguese medieval illuminations. The production of synthetic vermilion was based on the process described in the Judaeo-Portuguese medieval treatise “The book on how to make colours”, using materials and technologies as close as possible to the medieval ones. The reaction mechanism was studied by following the heating process by X-ray diffraction, and it was possible to conclude that the transformation from black cubic b-HgS into red hexagonal a-HgS is a solid-state phase transition, occurring at 235 ?C. This result is contrary to what published in technical art literature, in which this process is described as a sublimation. Moreover, Scanning Electron Microscopy evidenced a sinterization effect on the artificial vermilion, not found in medieval original samples nor in paints prepared with mineral cinnabar from Almadén (Spain). Red mercury sulphide, natural and synthetic,was then prepared as a parchment-glue paint and compared to proteinaceous red paints from 12the13th century minia- tures produced in important medieval monasteries, previously fully characterized by a multi-analytical approach (m-Energy dispersive X-ray fluorescence, m-Fourier Transform Infrared Spectroscopy, Raman microscopy). A comparative Electron probe microanalysis of the red paints point to amineral provenance for medieval vermilion found in Portuguese illuminations

Miguel, C., J. V. Pinto, M. Clarke, and M. J. Melo, "The alchemy of red mercury sulphide: The production of vermilion for medieval art", Dyes and Pigments, vol. 102, pp. 210-217, 2014. AbstractWebsite

Vermilion red, mercury sulphide (α-HgS), was one of the most important reds in art and its use as a pigment dates back to Antiquity. In medieval Europe, it could be mined as cinnabar, or produced as vermilion by heating mercury with sulphur. This work aims to study the production of synthetic vermilion as a medieval pigment and to confirm which was the source (mineral or artificial) of the reds used in Portuguese medieval illuminations. The production of synthetic vermilion was based on the process described in the Judaeo-Portuguese medieval treatise “The book on how to make colours”, using materials and technologies as close as possible to the medieval ones. The reaction mechanism was studied by following the heating process by X-ray diffraction, and it was possible to conclude that the transformation from black cubic β-HgS into red hexagonal α-HgS is a solid-state phase transition, occurring at 235 °C. This result is contrary to what published in technical art literature, in which this process is described as a sublimation. Moreover, Scanning Electron Microscopy evidenced a sinterization effect on the artificial vermilion, not found in medieval original samples nor in paints prepared with mineral cinnabar from Almadén (Spain). Red mercury sulphide, natural and synthetic, was then prepared as a parchment-glue paint and compared to proteinaceous red paints from 12th–13th century miniatures produced in important medieval monasteries, previously fully characterized by a multi-analytical approach (μ-Energy dispersive X-ray fluorescence, μ-Fourier Transform Infrared Spectroscopy, Raman microscopy). A comparative Electron probe microanalysis of the red paints point to a mineral provenance for medieval vermilion found in Portuguese illuminations.

Pereira, S., A. Gonçalves, N. Correia, J. Pinto, L. Í. Pereira, R. Martins, and E. Fortunato, "Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature", Solar Energy Materials and Solar Cells, vol. 120, Part A, pp. 109-115, 2014. AbstractWebsite

In this work we report the role of thickness on electrochromic behavior of nickel oxide (NiO) films deposited by e-beam evaporation at room temperature on ITO-coated glass. The structure and morphology of films with thicknesses between 100 and 500 nm were analyzed and then correlated with electrochemical response and transmittance modulation when immersed in 0.5 M LiClO4–PC electrolyte. The NiO exhibits an anodic coloration, reaching for the thickest film a transmittance modulation of 66% between colored and bleached state, at 630 nm, with a color efficiency of 55 cm2 C−1. Very fast switch between states was obtained, where coloration and bleaching times are 3.6 s cm−2 and 1.4 s cm−2, respectively.

Veigas, B., R. Branquinho, J. V. Pinto, P. J. Wojcik, R. Martins, E. Fortunato, and P. V. Baptista, "Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification", Biosensors and Bioelectronics, 2014. Abstract
n/a
Ceia, T. F., A. G. Silva, C. S. Ribeiro, J. V. Pinto, M. H. Casimiro, A. M. Ramos, and J. Vital, "PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor", Catalysis Today, vol. 236, pp. 98-107, 2014. Abstract
n/a