Viseu, F., and H. Rocha. "

Interdisciplinary technological approaches from a mathematics education point of view."

*Science and mathematics education for 21st century citizens: challenges and ways forward*. Eds. L. Leite, E. Oldham, A. Afonso, F. Viseu, L. Dourado, and H. Martinho. Nova Science Publishers, 2020.

AbstractMathematics has a strong presence in the school curriculum, often justified by its usefulness in social life, in the world of work and by its connections with other sciences. This interdisciplinary connection, in particular when it requires constructing and refining mathematical models and discussing their applications to solve problems of other sciences, can assist students to understand why mathematics is so important in school. In the development of interdisciplinary activities, the characteristics of the tasks emerge as an important aspect. The emphasis is on the use of technological materials and the way they can support the development of concepts, provide different representations and support deeper understandings, and offer a multifaceted support to collect data and simulate experiences. Based on these assumptions, the aim of this chapter is to present, analyse and discuss tasks that promote interdisciplinary technological approaches from a mathematical point of view. In this chapter we assume interdisciplinarity as a complex construct, and in order to clarify its meaning we will discuss several types of conceptions, from multidisciplinary, to interdisciplinary, and to transdisciplinary. We will then address related concepts, such as modelling and STEM, highlighting similarities and differences between them, to reach an understanding of interdisciplinarity. In the process of the interdiciplinary approach, digital technologies arise as a central element. Based on a set of tasks on mathematics and on different sciences, we discuss what can change on an interdisciplinary approach to the teaching and learning of mathematical content and on the articulation between subjects.

Rocha, H., E. Faggiano, and F. Mennuni. "

Teachers as task designers in the digital age: Teaching using technology."

*Proceedings of the 10th ERME Topic Conference - MEDA 2020*. Linz (Austria): ERME, 2020.

AbstractThe aim of the paper is to present and analyse the case of one teacher attempting to introduce his students to fractals using digital technology. His task design process has been made explicit through the writing of a storyboard. It has been analysed in order to focus on the stages of the process, identifying prominent elements in it by using the knowledge quartet framework. Results can be useful to inform teacher educators about his needs with respect to the development of his ability in task design. The importance of this aspect, particularly worth of note in the digital age in which teachers have many opportunities to access teaching resources online, has been amplified by the constraints to which educational systems have been subjected during the Covid-19 pandemic emergency.

Rocha, H. "

Using tasks to develop pre-service teachers’ knowledge for teaching mathematics with digital technology."

*ZDM Mathematics Education*. 52.7 (2020): 1381-1396.

AbstractTeacher education is central to the development of the professional knowledge of pre-service teachers. The main goal of this paper is to refect on the development that the analysis (done by a group of pre-service secondary teachers) of a set of tasks, based on elements related to domains of KTMT—Knowledge for Teaching Mathematics with Technology—can bring to the knowledge of pre-service teachers of mathematics. Specifcally, the goal was to investigate the following questions: (1) What are the factors that guide the pre-service teachers’ task discussion? (2) Which KTMT domains are emphasized by pre-service teachers during task discussion? The elements taken into account are the characteristics of the tasks (focus on cognitive level, structuring level and technology role), the use of representations (focus on balance and articulation of representations), and the equilibrium between experimentation (focus on digital technology afordances) and justifcation (focus on argumentation and proof). The methodology of this case study involves a qualitative approach. The main conclusions suggest that infuences in the pre-service teachers’ discussion of tasks fell into the following categories: the potentialities of technology, the type of tasks, and the prospective teachers’ experience with a set of tasks, and analysis of some real students’ reports. With regard to KTMT, although it was possible to identify some global development, Teaching and Learning and Technology Knowledge was the domain in which stronger development took place.