Publications

Export 118 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
I
Rocha, H. "Interdisciplinary tasks: pre-service teachers’ choice and approach." Science and mathematics education in the 21st century. Eds. L. Leite, and et al. Brussels: ATEE and CIEd, 2019. 82-93. Abstractrocha_2019_sciencematheduc.pdf

This study focusses on the criteria used by pre-service teachers of Mathematics to choose interdisciplinary tasks. The pre-service teachers’ knowledge is assumed as the basis of the actions taken and used as the origin of the choices and approaches observed. The study adopts a qualitative and interpretative methodology and the data were collected using class observation and interviews. The analysis is guided by the Application and Pedagogical Content Knowledge, a model inspired on TPACK (from Mishra and Koehler) and MKT (from Ball and colleagues). The conclusions point to an appreciation of the mathematical part of the tasks and to a devaluation of the remaining components. This suggests difficulty in articulating and integrating different domains of knowledge and points to a fragmented view of the potential of using mathematical applications.

Viseu, F., and H. Rocha. "Interdisciplinary technological approaches from a mathematics education point of view." Science and mathematics education for 21st century citizens: challenges and ways forward. Eds. L. Leite, E. Oldham, A. Afonso, F. Viseu, L. Dourado, and H. Martinho. Nova Science Publishers, 2020. Abstract

Mathematics has a strong presence in the school curriculum, often justified by its usefulness in social life, in the world of work and by its connections with other sciences. This interdisciplinary connection, in particular when it requires constructing and refining mathematical models and discussing their applications to solve problems of other sciences, can assist students to understand why mathematics is so important in school. In the development of interdisciplinary activities, the characteristics of the tasks emerge as an important aspect. The emphasis is on the use of technological materials and the way they can support the development of concepts, provide different representations and support deeper understandings, and offer a multifaceted support to collect data and simulate experiences. Based on these assumptions, the aim of this chapter is to present, analyse and discuss tasks that promote interdisciplinary technological approaches from a mathematical point of view. In this chapter we assume interdisciplinarity as a complex construct, and in order to clarify its meaning we will discuss several types of conceptions, from multidisciplinary, to interdisciplinary, and to transdisciplinary. We will then address related concepts, such as modelling and STEM, highlighting similarities and differences between them, to reach an understanding of interdisciplinarity. In the process of the interdiciplinary approach, digital technologies arise as a central element. Based on a set of tasks on mathematics and on different sciences, we discuss what can change on an interdisciplinary approach to the teaching and learning of mathematical content and on the articulation between subjects.

Giglione, S., E. Faggiano, and H. Rocha Investigating the impact of technology integration on Italian and Portuguese teachers’ perspectives concerning standardized assessment. MEDA – Mathematics Education at the Digital Age. Bari, Italy: ERME, 2024.
K
Rocha, H. Knowledge for Teaching Mathematics with Technology - a new framework of teacher knowledge. Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education. Kiel, Germany: PME, 2013. Abstract

Knowledge for Teaching Mathematics with Technology (KTMT) is a theoretical model that seeks to articulate previously existing models on professional knowledge and the conclusions that the investigation around the integration of technology has achieved. KTMT is a dynamic knowledge, informed by the practice, that develops from the knowledge on the base domains (Mathematics, Teaching and Learning, Technology and Curriculum), evolving as knowledge in the base domains interacts and as this promotes the development of inter-domain knowledge, which continue to interact, strengthening relations and leading to the development of an integrated knowledge, where knowledge on the base domains and on the two sets of inter-domains appears deeply integrated into a global knowledge.

Rocha, H. Knowledge for teaching mathematics with technology and the search for a suitable viewing window to represent functions. Proceedings of Cerme 9. Prague, Czech Republic: ERME, 2015. Abstract

The usual difficulties of students regarding the choice of an appropriate window when using the graphing calculator in the study of functions and the importance of the teachers’ knowledge to overcoming them, led to this study. The main goal was to characterize the way teachers address the viewing window in the classroom, trying to infer aspects of the Knowledge for Teaching Mathematics with Technology that can justify that practice. The conclusions reached point to the importance of a set of specific knowledge where I highlight the knowledge of the students’ difficulties, the knowledge of mathematical content necessary to understand the impact of the viewing window on the graphic, and the knowledge of teaching strategies that address both the students’ difficulties and the relevant mathematical knowledge.

Rocha, H. "Knowledge to teach Mathematics with technology: the Global Model." International Journal of Mathematical Education in Science and Technology (2025). AbstractWebsite

The teacher’s central role in technology integration and the challenges of that integration emphasise the need for a deeper understanding about the teacher’s knowledge required to teach with technology. Based on previous work and a systematic literature review, we identified three knowledge models often used: TPACK, KTMT and
PTK. The goal of this paper is to discuss the similarities and differences between these knowledge models and present a Global Model. This Global Model is not a new model. On the contrary, it is a model developed based on the existing models and intending to integrate in a single model the knowledge domains considered in the different existing models. The Global Model highlights the common domains considered and the common roots for the three models, but it also makes explicit the differences, mostly related to the understanding of the domains or even to the domains considered, and also to the way how the knowledge’s development is conceived.

M
Rocha, H. "Mathematical knowledge for teaching with technology: episodes of one teacher’s practice - Conhecimento matemático para ensinar com tecnologia: episódios da prática de uma professora." Educação Matemática Debate. 5.11 (2021): 1-22. AbstractWebsite

Research has highlighted the potential of technology to transform the teaching of Mathematics, but also the relevance of teachers and their professional knowledge. In this article, a qualitative methodology is adopted and two episodes of the practice of one teacher are analyzed in the scope of the study of functions in the 10th grade, based on the model of Knowledge for Teaching Mathematics with Technology (KTMT). The goal is to characterize the teacher's knowledge from her practice, simultaneously understanding how this contributes to promoting the development of the teacher's knowledge. The conclusions reached show the importance of including in the KTMT conception aspects highlighted by the research on technology integration. These aspects are determinant to characterize the teacher's knowledge. They also show the relevance of the practice for the development of the teacher's knowledge and the dynamic character of the vision of knowledge offered by KTMT.

Rocha, H. "Mathematical proof: from mathematics to school mathematics." Philosophical Transactions of the Royal Society A. 377.2140 (2019). AbstractWebsite

Proof plays a central role in developing, establishing, and communicating mathematical knowledge. Nevertheless it is not such a central element in school mathematics. This article discusses some issues involving mathematical proof in school, intending to characterize the understanding of mathematical proof in school, its function and the meaning and relevance attributed to the notion of simple proof. The main conclusions suggest that the idea of addressing mathematical proof at all levels of school is a recent idea that is not yet fully implemented in schools. It requires an adaptation of the understanding of proof to the age of the students, reducing the level of formality, and allowing the students to experience the different functions of proof and not only the function of verification. Among the different functions of proof, the function of explanation deserves special attention due to the illumination and empowerment that it can bring to the students and their learning. The way this function of proof relates to the notion of simple proof (and the related aesthetic issues) seems relevant enough to make it, in the future, a focus of attention for the teachers who address mathematical proof in the classroom.

Rocha, H. Mathematics teaching in Education and Training Courses. Proceedings of the International Conference on Education and New Learning Technologies. Barcelona, Spain: EduLearn, 2014. Abstract

MATHEMATICS TEACHING IN EDUCATION AND TRAINING COURSES
H. Rocha

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia (PORTUGAL)

Education and Training Courses have been specifically designed to the high number of young people in a situation of school dropout and in transition to working life, particularly those who enter the labor market early with insufficient levels of schooling and professional training. Mathematics is one of the curriculum components of these courses, for its contribution to the exercise of citizenship in a democratic society. Being an important part of the cultural legacy of our society is too often seen by students as a source of exclusion. It is known that young people who enter these courses often had an experience of underachievement in the discipline, what justifies that motivating students is at once the great challenge faced by the teacher. The program suggests taking a more concrete and linked to reality approach, allowing students to learn to recognize the mathematics in the world around them and using technology to promote that learning. However, it is the teacher who is responsible for managing its implementation, shaping the learning situations and integrating them in a coherent and articulated way in the specific course that students attend. In what concerns to assessment, the program also takes into account the usual characteristics of the students. Thus, the assessment includes a strong appreciation of students’ work, its presentation and discussion and further improvement of that work. The directions given to the teacher diverge from the traditional option of the evaluation test, providing guidelines to the form that each evaluation can take depending on the contents in study. However, once again, the teacher's role in curriculum management is not neglected, being valued the adequacy of proposals to the characteristics of the students.
The study presented here had as its main goal to analyze and understand the choices made by the teacher during the different stages of his practice, giving attention to the dilemmas he faced and to the reasons he took into account when making decisions.

The study adopts a qualitative and interpretative methodological approach, undertaking one teacher case study. Data collection included semi-structured interviews, classroom observation and document collection. Data analysis was based on the evidence gathered in the light of the problem under study.

The conclusions of the study point to the important role of technology and suggest that the reduction of prerequisites, the intention of taking into account the students’ interests and the desire of improving students culture is central in what concerns to task selection; while the active involvement of students characterized the implementation of the classes. The dilemmas faced by the teacher focus mainly on the relative importance and on the demanding level that he should give to each content, as well as the articulation that he should promote between formal and intuitive knowledge. In what concerns to assessment, the results achieved highlight the impact that students ideas can have on teacher’s practice, conducting to the inclusion of tests as an assessment element, against the teacher’s intentions.

keywords: education and training courses, mathematics, innovation, technology.

Rocha, H. "Moving from one representation to another: different ways of doing it, different mathematical learning." The Scottish Mathematical Council Journal. 47 (2017): 40-48.Website
Rocha, H., and I. Oitavem. "A mudança que abala o mundo – Editorial." Educação e Matemática.116 (2012): 1.
Rocha, H. Múltiplas abordagens, múltiplas representações: um contributo para incrementar a relevância da representação algébrica [Multiple approaches, multiple representations: a contribute to increase the relevance of algebraic representation]. Atas do Encontro de Investigação em Educação Matemática. Bragança, Portugal: SPIEM, 2015. Abstract

A tecnologia e o impacto que esta pode ter sobre as diferentes representações utilizadas e, em particular, sobre a representação algébrica são o foco deste artigo. Procura-se assim compreender como é que o professor enquadra a representação algébrica no trabalho em sala de aula e como a procura tornar relevante para os alunos num contexto de utilização da tecnologia. As conclusões alcançadas apontam para a opção por uma estreita articulação entre as representações algébrica e gráfica e para uma criteriosa escolha de tarefas, envolvendo múltiplas abordagens, onde a representação algébrica vem disponibilizar informação fundamental e tendencialmente inacessível a partir de outras representações.

N
Viseu, F., P. Mendes, and H. Rocha The notion of function by basic education preservice teachers. ATEE Winter Conference ‘Science and mathematics education in the 21st century. Brussels: ATEE and CIEd, 2019. Abstract

The current curricular guidelines for mathematics education in Portugal emphasize the relevance of working with different representations of functions to promote understanding. Given this relevance, we seek understanding about the notion of function held by 37 basic education pre-service teachers in their first year of a master’s course. Data were collected through a task focusing on identifying functions in situations based on different representations. The content analysis technique was then adopted in the search for an understanding of the justifications given by the participants. The results achieved suggest it is easier for the pre-service teachers to identify examples that are not functions than examples that are functions. There is also a tendency for greater accuracy in the identification of examples expressed by tables than by algebraic expressions. The justifications presented show a notion of function as a relation between values of two non-empty sets, but without guaranteeing that this relation is single-valued.

O
Botelho, M. C., and H. Rocha O conhecimento do professor de matemática e a integração das tecnologias na sua prática. Atas do Encontro de Investigação em Educação Matemática., 2022.
Botelho, M. C., and H. Rocha O conhecimento profissional do professor de matemática na integração de diferentes tecnologias. Atas do XXXII Seminário de Investigação em Educação Matemática. Setúbal: APM, 2022.
Coelho, T., and H. Rocha O conhecimento profissional do professor e a interdisciplinaridade em contexto de integração com a tecnologia. XXXII Seminário de Investigação em Educação Matemática. Setúbal: APM, 2022.
Botelho, M. C., and H. Rocha. "O conhecimento profissional do professor na mobilização de diferentes representações com diferentes tecnologias." Iberian Journal of Information Systems and Technologies. E71 (2024): 486-499.Website
Rocha, H., M. C. Costa, and H. Jacinto O desenvolvimento curricular e a formação de professores. Atas do Encontro de Investigação em Educação Matemática. SPIEM, 2022.
Rocha, H., and F. Viseu O ensino de Funções no 3.º ciclo e no ensino secundário: que diferenças? [Teaching Functions at lower and upper secondary: what is different?]. EIEM. Coimbra: SPIEM, 2018. Abstract

Neste estudo analisamos as perceções que professores do 3.º ciclo e do ensino secundário têm da sua prática no âmbito do ensino de Funções, com o objetivo de as caracterizar e de identificar as diferenças existentes entre estes dois grupos de professores. Um aspeto particularmente relevante se tivermos em conta que se tratam de dois grupos de professores com formações iniciais idênticas. Adotamos uma metodologia mista, com uma vertente quantitativa apoiada na aplicação de questionários e uma vertente qualitativa baseada na realização de entrevistas. As principais conclusões alcançadas apontam para semelhanças nas perceções dos professores, mas também para algumas diferenças em função do ciclo de ensino. Na planificação das aulas os manuais são amplamente utilizados, mas de forma diferente consoante o ciclo de ensino do professor. Os professores de ambos os ciclos de ensino estabelecem conexões entre diferentes representações, mas valorizam de diferentes formas as representações disponíveis. O envolvimento dos alunos nas atividades da aula é outro aspeto destacado pelos professores, mas uma vez mais existem diferenças. Na avaliação o recurso ao teste é enfatizado pelos dois grupos de professores, mas já existem diferenças quanto à importância atribuída ao trabalho de grupo.

Rocha, H. O formal da matemática e o intuitivo da tecnologia: que articulação?. Atas do ProfMat 2015. Évora, Portugal: APM, 2015. Abstractpaper.pdf

A tecnologia é cada vez mais indispensável no dia-a-dia, rodeando-nos constantemente. Para os nossos alunos é uma realidade que conhecem desde sempre e que tendem a encarar com uma naturalidade descontraída e intuitiva. A facilidade de acesso à tecnologia e o modo como esta tende a enfatizar o intuitivo e a relegar para segundo plano o formal e a demonstração matemática são o foco deste artigo. Partindo da análise de uma proposta de trabalho onde alunos de 10.º ano começam por uma abordagem intuitiva apoiada na calculadora gráfica e terminam a realizar uma demonstração da conjectura que formularam, procuro discutir a problemática. As conclusões alcançadas sugerem que é possível colocar aos alunos situações onde estes se podem aperceber da vantagem de recorrer tanto a abordagens mais formais como a abordagens mais intuitivas e isto mesmo quando a tecnologia é uma realidade em sala de aula. Sugere ainda que a realização de demonstrações pode, entre outros aspectos já identificados na literatura, dar um contributo importante para a compreensão de aspectos basilares da Matemática.

Rocha, H. O formalismo matemático num contexto de utilização da tecnologia [Mathematical proof in a context of technology integration]. Atas do XXVI SIEM. Évora: APM, 2015. Abstract

The technology and how it tends to emphasize the intuitive and overshadow calculus and mathematical proof are the focus of this paper. The conclusions reached suggest that tasks where students might realize the usefulness of calculus as well as of more intuitive approaches are possible even when the technology is a reality in the classroom. They also suggest that proof may, among other things already identified in the literature, make an important contribution to the students’ understanding of fundamental aspects of mathematics.

A tecnologia e a forma como esta tende a enfatizar o intuitivo e a relegar para segundo plano o formal e a demonstração matemática são o foco deste artigo. As conclusões alcançadas sugerem que é possível colocar aos alunos situações onde estes se possam aperceber da vantagem de recorrer tanto a abordagens mais formais como a abordagens mais intuitivas e isto mesmo quando a tecnologia é uma realidade em sala de aula. Sugere ainda que a realização de demonstrações pode, entre outros aspectos já identificados na literatura, dar um contributo importante para a compreensão de aspectos basilares da Matemática.

Lopes, S., and H. Rocha O jogo como promotor da comunicação e aprendizagem matemática [Games to promote communication and mathematical learning]. XXVII SIEM. Porto, Portugal: APM, 2016. Abstract

Games are commonly appointed as a methodological tool capable of promoting students’ effective learning. In this context, this study intends to analyze the impact of mathematical discussions developed while
playing a polynomial game. Namely it intends to analyze the impact on the consolidation of mathematical concepts previously worked in the classroom and on the communications skills. Two case studies where developed involving 10th grade students. Data gathering was based on direct observation and an inquiry. The main conclusions suggest that the game encouraged the discussion about the mathematical contents and therefore promoted the development of the mathematical discourse. Besides that, it allowed a deeper apprehension of mathematical concepts, and the overcome of some difficulties.

Rocha, H., and P. Teixeira O professor e a aula de Matemática [The teacher and the Mathematics class]. EIEM. Coimbra: SPIEM, 2018. Abstract

A formação e o desenvolvimento profissional do professor são determinantes para as opções que este assume na sala de aula. É o seu conhecimento, aquilo que valoriza e o contexto onde se encontra inserido que determinam as experiências de aprendizagem que proporciona aos seus alunos. Mas esse conhecimento profissional envolve uma multiplicidade de dimensões que decorrem da sua formação inicial e contínua, mas também das experiências que teve ocasião de vivenciar e de processos de socialização, onde a interação com os pares e as oportunidades de desenvolver trabalho colaborativo são elementos importantes. A aula de matemática surge assim como o campo aglutinador do trabalho do professor numa dupla vertente que se une num ciclo único: por um lado a aula de Matemática é o foco do trabalho do professor, onde as opções previamente assumidas são implementadas; e, por outro lado, é um ponto de partida para a reflexão e o desenvolvimento profissional do professor.

Da planificação da aula, onde a escolha das tarefas e a forma de as implementar são aspetos centrais e onde a vertente histórica não deixará de estar presente; à sua implementação, operacionalizando diferentes recursos (nomeadamente os tecnológicos) e assumindo dinâmicas de aula diferenciadas; até à fase de reflexão entre pares, que termina e reinicia um novo ciclo – estas são as grandes etapas em torno das quais este texto se organiza e onde a formação inicial e contínua não deixarão de estar presentes.