Publications

Export 35 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Teixeira, L. R., C. M. Cordas, M. P. Fonseca, N. E. C. Duke, P. R. Pokkuluri, and C. A. Salgueiro. "Modulation of the Redox Potential and Electron/Proton Transfer Mechanisms in the Outer Membrane Cytochrome OmcF From Geobacter sulfurreducens." Frontiers in Microbiology. 10 (2020). AbstractWebsite
n/a
Teixeira, L. R., J. M. Dantas, C. A. Salgueiro, and C. M. Cordas. "Thermodynamic and kinetic properties of the outer membrane cytochrome OmcF, a key protein for extracellular electron transfer in Geobacter sulfurreducens." Biochimica et Biophysica Acta - Bioenergetics. 1859.10 (2018): 1132-1137. AbstractWebsite
n/a
S
Santos, T. C., A. R. De Oliveira, J. M. Dantas, C. A. Salgueiro, and C. M. Cordas. "Thermodynamic and kinetic characterization of PccH, a key protein in microbial electrosynthesis processes in Geobacter sulfurreducens." Biochimica et Biophysica Acta - Bioenergetics. 1847.10 (2015): 1113-1118. AbstractWebsite
n/a
Samhan-Arias, A. K., R. M. Almeida, S. Ramos, C. M. Cordas, I. Moura, C. Gutierrez-Merino, and JJG Moura. "Topography of human cytochrome b5/cytochrome b5 reductase interacting domain and redox alterations upon complex formation." Biochimica et Biophysica Acta - Bioenergetics. 1859.2 (2018): 78-87. AbstractWebsite
n/a
Samhan-Arias, A. K., L. B. Maia, C. M. Cordas, I. Moura, C. Gutierrez-Merino, and JJG Moura. "Peroxidase-like activity of cytochrome b5 is triggered upon hemichrome formation in alkaline pH." Biochimica et Biophysica Acta - Proteins and Proteomics. 1866.2 (2018): 373-378. AbstractWebsite
n/a
Samhan-Arias, A. K., S. Fortalezas, C. M. Cordas, I. Moura, JJG Moura, and C. Gutierrez-Merino. "Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c." Redox Biology. 15 (2018): 109-114. AbstractWebsite
n/a
Samhan-Arias, A. K., C. M. Cordas, M. S. Carepo, L. B. Maia, C. Gutierrez-Merino, I. Moura, and JJG Moura. "Ligand accessibility to heme cytochrome b 5 coordinating sphere and enzymatic activity enhancement upon tyrosine ionization." Journal of Biological Inorganic Chemistry. 24.3 (2019): 317-330. AbstractWebsite
n/a
R
Rosa, V., A. P. S. Gaspari, F. Folgosa, C. M. Cordas, P. Tavares, T. Santos-Silva, S. Barroso, and T. Avilés. "Imine ligands based on ferrocene: Synthesis, structural and Mössbauer characterization and evaluation as chromogenic and electrochemical sensors for Hg2+." New Journal of Chemistry. 42.5 (2018): 3334-3343. AbstractWebsite
n/a
Rebocho, S., C. M. Cordas, R. Viveiros, and T. Casimiro. "Development of a ferrocenyl-based MIP in supercritical carbon dioxide: Towards an electrochemical sensor for bisphenol A." Journal of Supercritical Fluids. 135 (2018): 98-104. AbstractWebsite
n/a
Ramos, S., R. M. Almeida, C. M. Cordas, JJG Moura, S. R. Pauleta, and I. Moura. "Insights into the recognition and electron transfer steps in nitric oxide reductase from Marinobacter hydrocarbonoclasticus." Journal of Inorganic Biochemistry. 177 (2017): 402-411. AbstractWebsite
n/a
Ramanaiah, S. V., C. M. Cordas, S. Matias, and L. P. Fonseca. "In situ electrochemical characterization of a microbial fuel cell biocathode running on wastewater." Catalysts. 11.7 (2021). AbstractWebsite
n/a
N
Nunes, M. J., C. M. Cordas, JJG Moura, J. P. Noronha, and L. C. Branco. "Screening of Potential Stress Biomarkers in Sweat Associated with Sports Training." Sports Medicine - Open. 7.1 (2021). AbstractWebsite
n/a
M
Matias, S. C., N. M. T. Lourenço, L. J. P. Fonseca, and C. M. Cordas. "Comparative Electrochemical Behavior of Cytochrome c on Aqueous Solutions Containing Choline-Based Room Temperature Ionic Liquids." ChemistrySelect. 2.27 (2017): 8701-8705. AbstractWebsite
n/a
Maiti, B. K., L. B. Maia, AJ Moro, J. C. Lima, C. M. Cordas, I. Moura, and JJG Moura. "Unusual Reduction Mechanism of Copper in Cysteine-Rich Environment." Inorganic Chemistry. 57.14 (2018): 8078-8088. AbstractWebsite
n/a
G
Gomes, F. O., L. B. Maia, C. Cordas, I. Moura, C. Delerue-Matos, JJG Moura, and S. Morais. "Electroanalytical characterization of the direct Marinobacter hydrocarbonoclasticus nitric oxide reductase-catalysed nitric oxide and dioxygen reduction." Bioelectrochemistry. 125 (2019): 8-14. AbstractWebsite
n/a
Gomes, F. O., L. B. Maia, C. Cordas, C. Delerue-Matos, I. Moura, JJG Moura, and S. Morais. "Nitric Oxide Detection Using Electrochemical Third-generation Biosensors – Based on Heme Proteins and Porphyrins." Electroanalysis. 30.11 (2018): 2485-2503. AbstractWebsite
n/a
F
Folgosa, F., C. M. Cordas, J. A. Santos, AS Pereira, JJG Moura, P. Tavares, and I. Moura. "New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway." Biochemical Journal. 438 (2011): 485-494. AbstractWebsite

SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two ironcentre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8 x 10(7) M(-1) . s(-1) and 1.3 x 10(6) M(-1) . s(-1) for SOR(Fe(IIII)-Fe(II)) and for SOR(Fe(IIII)-Fe(III)) forms respectively, and 3.2 x 10(6) M(-1) s(-1) for the SOR(Zn(II)-Fe(III)) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.

D
Duarte, A. G., C. M. Cordas, JJG Moura, and I. Moura. "Steady-state kinetics with nitric oxide reductase (NOR): New considerations on substrate inhibition profile and catalytic mechanism." Biochimica et Biophysica Acta - Bioenergetics. 1837.3 (2014): 375-384. AbstractWebsite
n/a
Dall'Agnol, L. T., C. M. Cordas, and JJG Moura. "Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism." Bioelectrochemistry. 97 (2014): 43-51. AbstractWebsite
n/a
C
Cordas, C. M., A. S. Viana, S. Leupold, F. P. Montforts, and L. M. Abrantes. "Self-assembled monolayer of an iron(III) porphyrin disulphide derivative on gold." Electrochemistry Communications. 5.1 (2003): 36-41. AbstractWebsite

A novel iron(III) porphyrin disulphide derivative have been successfully immobilised on gold surfaces by self-assembly. The redox response of the modified electrodes was compared with the obtained for a similar iron porphyrin in solution, confirming the immobilisation of the metalloporphyrin. The gravimetric data obtained by electrochemical quartz crystal microbalance (EQCM) during adsorption allowed an estimation of the electrode coverage, providing further evidence for the formation of the porphyrin SAM. The modified electrodes were also measured by conventional and imaging ellipsometry. The electrocatalytic activity of the two modified electrodes was tested for the reduction of the molecular oxygen. (C) 2002 Elsevier Science B.V. All rights reserved.

Cordas, C. M., AS Pereira, C. E. Martins, C. G. Timoteo, I. Moura, JJG Moura, and P. Tavares. "Nitric oxide reductase: Direct electrochemistry and electrocatalytic activity." Chembiochem. 7.12 (2006): 1878-1881. AbstractWebsite
n/a
Cordas, C. M., L. T. Guerra, C. Xavier, and JJG Moura. "Electroactive biofilms of sulphate reducing bacteria." Electrochimica Acta. 54.1 (2008): 29-34. AbstractWebsite

Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m(-2) that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces. (c) 2008 Elsevier Ltd. All rights reserved.

Cordas, C. M., A. G. Duarte, JJG Moura, and I. Moura. "Electrochemical behaviour of bacterial nitric oxide reductase - Evidence of low redox potential non-heme FeB gives new perspectives on the catalytic mechanism." Biochimica et Biophysica Acta - Bioenergetics. 1827.3 (2013): 233-238. AbstractWebsite
n/a
Cordas, C. M., and JJG Moura. "Molybdenum and tungsten enzymes redox properties – A brief overview." Coordination Chemistry Reviews. 394 (2019): 53-64. AbstractWebsite
n/a
Cordas, C. M., J. Wilton, T. Cardoso, F. Folgosa, AS Pereira, and P. Tavares. "Electrochemical behaviour of Dps-a mini-ferritin." European Biophysics Journal with Biophysics Letters. 40 (2011): 181. AbstractWebsite
n/a