Publications

Export 64 results:
Sort by: Author Title Type [ Year  (Asc)]
2010
Fernandes, Vítor H., and M. V. Volkov. "On divisors of semigroups of order-preserving mappings of a finite chain." Semigroup Forum. 81 (2010): 551-554.Website
2011
Fernandes, Vítor H., and Teresa M. Quinteiro. "Bilateral semidirect product decompositions of transformation monoids." Semigroup Forum. 82 (2011): 271-287. Abstract
Summary: In this paper we consider the monoid $\mathcal {OR}_{n}$ of all full transformations on a chain with $n$ elements that preserve or reverse the orientation, as well as its submonoids $\mathcal {OD}_{n}$ of all order-preserving or order-reversing elements, $\mathcal {OP}_{n}$ of all orientation-preserving elements and $\mathcal {O}_{n}$ of all order-preserving elements. By making use of some well known presentations, we show that each of these four monoids is a quotient of a bilateral semidirect product of two of its remarkable submonoids.
Araújo, João, Vítor H. Fernandes, Manuel M. Jesus, Victor Maltcev, and James D. Mitchell. "Automorphisms of partial endomorphism semigroups." Publicationes Mathematicae Debrecen. 79.1-2 (2011): 23-39.
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "The cardinal and the idempotent number of various monoids of transformations on a finite chain." Bulletin of the Malaysian Mathematical Sciences Society. 34.2 (2011): 79-85. Abstract

Summary: We consider various classes of monoids of transformations on a finite chain, in particular of transformations that preserve or reverse either the order or the orientation. Being finite monoids we are naturally interested in computing both their cardinals and their idempotent numbers. Fibonacci and Lucas numbers play an essential role in the last computations.

Fernandes, Vítor H., and Teresa M. Quinteiro. "On the monoids of transformations that preserve the order and a uniform partition." Communications in Algebra. 39.8 (2011): 2798-2815.
2012
Fernandes, Vítor H., and Teresa M. Quinteiro. "The cardinal of various monoids of transformations that preserve a uniform partition." Bulletin of the Malaysian Mathematical Sciences Society. 35.4 (2012): 885-896.
Dimitrova, I., Vítor H. Fernandes, and J. Koppitz. "The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain." Publicationes Mathematicae Debrecen. 81.1-2 (2012): 11-29.
2013
Delgado, Manuel, and Vítor H. Fernandes. "Rees quotients of numerical semigroups." Portugaliae Mathematica. 70.2 (2013): 93-112. AbstractWebsite

We introduce a class of finite semigroups obtained by considering Rees
quotients of numerical semigroups.
Several natural questions concerning this class, as well as particular
subclasses obtained by considering some special ideals, are answered while
others remain open. We exhibit nice presentations for these semigroups and
prove that the Rees quotients by ideals of N, the positive integers under
addition, constitute a set of generators for the pseudovariety of commutative
and nilpotent semigroups.

2014
Fernandes, Vítor H., Preeyanuch Honyam, Teresa M. Quinteiro, and Boorapa Singha. "On semigroups of endomorphisms of a chain with restricted range." Semigroup Forum (DOI: 10.1007/s00233-013-9548-x). 89.1 (2014): 77-104. AbstractWebsite

Let $X$ be a finite or infinite chain and let $\O(X)$ be the monoid of all endomorphisms of $X$.
In this paper, we describe the largest regular subsemigroup of $\O(X)$ and Green's relations on $\O(X)$.
In fact, more generally, if $Y$ is a nonempty subset of $X$ and $\O(X,Y)$ is the subsemigroup of $\O(X)$ of all elements with range contained in $Y$,
we characterize the largest regular subsemigroup of $\O(X,Y)$ and Green's relations on $\O(X,Y)$.
Moreover, for finite chains, we determine when two semigroups of the type $\O(X,Y)$ are isomorphic and calculate their ranks.

Fernandes, Vítor H., and Jintana Sanwong. "On the rank of semigroups of transformations on a finite set with restricted range." Algebra Colloquium. 21.3 (2014): 497-510.authorsfinalversion.pdfWebsite
Fernandes, Vítor H., and Teresa M. Quinteiro. "On the ranks of certain monoids of transformations that preserve a uniform partition." Communications in Algebra. 42.2 (2014): 615-636.
2015
Cicalò, Serena, Vítor H. Fernandes, and Csaba Schneider. "Partial transformation monoids preserving a uniform partition." Semigroup Forum (DOI 10.1007/s00233-014-9629-5). 90.2 (2015): 532-544. AbstractWebsite

The objective of this paper is to study the monoid of all partial
transformations of a finite set that preserve a uniform partition. In addition
to proving that this monoid is a quotient of a wreath product with respect to a
congruence relation, we show that it is generated by 5 generators, we compute
its order and determine a presentation on a minimal generating set.

Zhao, Ping, and Vítor H. Fernandes. "The ranks of ideals in various transformation monoids." Communications in Algebra (DOI:10.1080/00927872.2013.847946) . 43.2 (2015): 674-692. Abstractauthorsfinalversion.pdfWebsite

In this paper we consider various classes of monoids of transformations of a finite chain,
including those of transformations that preserve or reverse either the order or the orientation.
In line with Howie and McFadden (1990),
we complete the study of the ranks (and of idempotent ranks, when applicable) of all their ideals.

2016
Fernandes, Vítor H., and Teresa M. Quinteiro. "A note on bilateral semidirect product decompositions of some monoids of order-preserving partial permutations." Bull. Korean Math. Soc.. 53.2 (2016): 495-506. AbstractWebsite

In this note we consider the monoid $PODI_n$ of all monotone partial permutations on $\{1,\ldots,n\}$ and its submonoids $DP_n$, $POI_n$ and $ODP_n$ of all partial isometries, of all order-preserving partial permutations and of all order-preserving partial isometries, respectively. We prove that both the monoids $POI_n$ and $ODP_n$ are quotients of bilateral semidirect products of two of their remarkable submonoids, namely of extensive and of co-extensive transformations. Moreover, we show that $PODI_n$ is a quotient of a semidirect product of $POI_n$ and the group $\mathcal{C}_2$ of order two and, analogously, $DP_n$ is a quotient of a semidirect product of $ODP_n$ and $\mathcal{C}_2$.

Fernandes, Vítor H., Preeyanuch Honyam, Teresa M. Quinteiro, and Boorapa Singha. "On semigroups of orientation-preserving transformations with restricted range." Communications in Algebra (DOI:10.1080/00927872.2014.975345). 44.1 (2016): 253-264. Abstractauthorsfinalversion.pdfWebsite

Let $X_n$ be a chain with n elements ($n\in\N$) and let $\OP_n$ be the monoid of all orientation-preserving transformations of $X_n$. In this paper, for any nonempty subset $Y$ of $X_n$, we consider the subsemigroup $\OP_n(Y)$ of $\OP_n$ of all transformations with range contained in $Y$: we describe the largest regular subsemigroup of $\OP_n(Y)$, which actually coincides with its subset of all regular elements, and Green's relations on $\OP_n(Y)$. Also, we determine when two semigroups of the type $\OP_n(Y)$ are isomorphic and calculate their ranks. Moreover, a parallel study is presented for the correspondent subsemigroups of the monoid $\OR_n$ of all either orientation-preserving or orientation-reversing transformations of $X_n$.

Fernandes, Vítor H., and Teresa M. Quinteiro. "Presentations for monoids of finite partial isometries." Semigroup Forum (DOI: 10.1007/s00233-015-9759-4). 93.1 (2016): 97-110. AbstractWebsite

In this paper we give presentations for the monoid $\DP_n$ of all partial isometries on $\{1,\ldots,n\}$ and for its submonoid $\ODP_n$ of all order-preserving partial isometries.

2017
Dimitrova, I., Vítor H. Fernandes, and J. Koppitz. "A note on generators of the endomorphism semigroup of an infinite countable chain." Journal of Algebra and its Applications (DOI: 10.1142/S0219498817500311). 16 (2017): 1750031 (9 pages). AbstractWebsite

In this note, we consider the semigroup $O(X)$ of all order endomorphisms of an infinite chain $X$ and the subset $J$ of $O(X)$ of all transformations $\alpha$ such that $|Im(\alpha)|=|X|$. For an infinite countable chain $X$, we give a necessary and sufficient condition on $X$ for $O(X) = < J >$ to hold. We also present a sufficient condition on $X$ for $O(X) = < J >$ to hold, for an arbitrary infinite chain $X$.

2019
Fernandes, Vítor H., and Paulo G. Santos. "Endomorphisms of semigroups of order-preserving partial transformations." Semigroup Forum (10.1007/s00233-018-9948-z). 99 (2019): 333-344. AbstractWebsite

In this paper we characterize the monoids of endomorphisms of the semigroups PO_n and POI_n of all order-preserving partial transformations and of all order-preserving partial permutations, respectively, of a finite n-chain.

Fernandes, Vítor H., J. Koppitz, and T. Musunthia. "The rank of the semigroup of all order-preserving transformations on a finite fence." Bulletin of the Malaysian Mathematical Sciences Society (DOI: 10.1007/s40840-017-0598-1). 42.5 (2019): 2191-2211. AbstractWebsite

A zig-zag (or fence) order is a special partial order on a (finite) set. In this paper, we consider the semigroup $TF_{n}$ of all
order-preserving transformations on an $n$-element zig-zag ordered set. We determine the rank of $TF_{n}$ and provide a minimal generating set for $TF_{n}$. Moreover, a formula for the number of idempotents in $TF_{n}$ is given.

2020
Dimitrova, I., Vítor H. Fernandes, J. Koppitz, and T. M. Quinteiro. "Ranks of monoids of endomorphisms of a finite undirected path (DOI: 10.1007/s40840-019-00762-4)." Bulletin of the Malaysian Mathematical Sciences Society. 43 (2020): 1623-1645. AbstractWebsite

In this paper we study the widely considered endomorphisms and weak endomorphisms of a finite undirected path from monoid generators perspective. Our main aim is to determine the ranks of the monoids $wEnd P_n$ and $End P_n$ of all weak endomorphisms and all endomorphisms of the undirected path $P_n$ with $n$ vertices. We also consider strong and strong weak endomorphisms of $P_n$.

2021
Fernandes, Vítor H., M. M. Jesus, and B. Singha. "On orientation-preserving transformations of a chain." Communications in Algebra (DOI 10.1080/00927872.2020.1870996). 49.6 (2021): 2300-2325. AbstractWebsite

In this paper we introduce the notion of an orientation-preserving transformation on an arbitrary chain, as
a natural extension for infinite chains of the well known concept for finite chains introduced in 1998 by McAlister and, independently, in 1999 by Catarino and Higgins.
We consider the monoid POP(X) of all orientation-preserving partial transformations on a finite or infinite chain X and its submonoids OP(X) and POPI(X) of all orientation-preserving full transformations and of all orientation-preserving partial permutations on X, respectively.
The monoid PO(X) of all order-preserving partial transformations on X and its injective counterpart POI(X) are also considered.
We study the regularity and give descriptions of the Green's relations of the monoids POP(X), PO(X), OP(X), POPI(X) and POI(X).

Dimitrova, I., Vítor H. Fernandes, J. Koppitz, and T. M. Quinteiro. "Partial Automorphisms and Injective Partial Endomorphisms of a Finite Undirected Path." Semigroup Forum. 103 (2021): 87-105. AbstractWebsite

In this paper, we study partial automorphisms and, more generally, injective partial endomorphisms of a finite undirected path from Semigroup Theory perspective. Our main objective is to give formulas for the ranks of the monoids IEnd(P_n) and PAut(P_n) of all injective partial endomorphisms and of all partial automorphisms of the undirected path P_n with n vertices. We also describe Green's relations of PAut(P_n) and IEnd(P_n) and calculate their cardinals.

Fernandes, Vítor H. "The Vagner-Preston representation of a block-group." Southeast Asian Bull. Math.. 45.6 (2021): 805-812. AbstractWebsite

In this short note we construct an extension of the Vagner-Preston representation for block-groups and show that its kernel is the largest congruence that separates regular elements.

2022
Caneco, Rita, Vítor H. Fernandes, and Teresa M. Quinteiro. "Ranks and presentations of some normally ordered inverse semigroups." Periodica Mathematica Hungarica (DOI 10.1007/s10998-022-00448-8). 85 (2022): 435-447. AbstractWebsite

In this paper we compute the rank and exhibit a presentation for the monoids
of all $P$-stable and $P$-order preserving partial permutations on a finite set
$\Omega$, with $P$ an ordered uniform partition of $\Omega$. These (inverse)
semigroups constitute a natural class of generators of the pseudovariety of
inverse semigroups ${\sf NO}$ of all normally ordered (finite) inverse
semigroups.

2023
Li, De Biao, and Vítor H. Fernandes. "Endomorphisms of semigroups of monotone transformations." Journal of Algebra and its Applications (DOI 10.1142/S0219498824502244; Online 5 July 2023) (2023). AbstractWebsite

In this paper, we characterize the monoid of endomorphisms of the semigroup of all monotone full transformations of a finite chain, as well as the monoids of endomorphisms of the semigroup of all monotone partial transformations and of the semigroup of all monotone partial permutations of a finite chain.