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Abstract

Let Xn be a chain with n elements (n ∈ N) and let OPn be the monoid of all orientation-preserving transformations
of Xn. In this paper, for any nonempty subset Y of Xn, we consider the subsemigroup OPn(Y ) of OPn of all
transformations with range contained in Y : we describe the largest regular subsemigroup of OPn(Y ), which actually
coincides with its subset of all regular elements. Also, we determine when two semigroups of the type OPn(Y ) are
isomorphic and calculate their ranks. Moreover, a parallel study is presented for the correspondent subsemigroups of
the monoid ORn of all either orientation-preserving or orientation-reversing transformations of Xn.
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Introduction and preliminaries

Let X be a nonempty set and denote by T (X) the monoid (under composition) of all full transformations on X. Let
n ∈ N. Let Xn be a chain with n elements, say Xn = {1 < 2 < · · · < n}, and denote the monoid T (Xn) simply by
Tn. Let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 0) elements from the chain Xn. We say that a is cyclic [respectively,
anti-cyclic] if there exists no more than one index i ∈ {1, . . . , t} such that ai > ai+1 [respectively, ai < ai+1], where at+1

denotes a1. Let α ∈ Tn. We say that α is an orientation-preserving [respectively, orientation-reversing] transformation
if the sequence of its images (1α, . . . , nα) is cyclic [respectively, anti-cyclic]. It is easy to check that the product of
two orientation-preserving or of two orientation-reversing transformations is orientation-preserving and the product of an
orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing. Denote by OPn
the submonoid of Tn whose elements are orientation-preserving and by ORn the submonoid of Tn whose elements are
either orientation-preserving or orientation-reversing.

The notion of an orientation-preserving transformation was introduced by McAlister in [16] and, independently, by
Catarino and Higgins in [4]. Several properties of the monoids OPn and ORn have been investigated in these two papers.
A presentation for the monoid OPn, in terms of 2n − 1 generators, was given by Catarino in [3]. Another presentation
for OPn, in terms of 2 (its rank) generators, was found by Arthur and Ruškuc [2], who also exhibited a presentation for
the monoid ORn, in terms of 3 (its rank) generators. The congruences of the monoids OPn and ORn were completely
described by Fernandes et al. in [6]. Semigroups of orientation-preserving transformations were also studied in several
recent papers (e.g. see [1, 5, 7, 9, 10, 11, 23]).

Let Y be a nonempty subset of X and denote by T (X,Y ) the subsemigroup {α ∈ T (X) | Im(α) ⊆ Y } of T (X) of all
elements with range (image) restricted to Y .

In 1975, Symons [22] introduced and studied the semigroup T (X,Y ). He described all the automorphisms of T (X,Y )
and also determined when two semigroups of this type are isomorphic. In [18], Nenthein et al. characterized the regular
elements of T (X,Y ) and, in [19], Sanwong and Sommanee obtained the largest regular subsemigroup of T (X,Y ) and
showed that this subsemigroup determines Green’s relations on T (X,Y ). Moreover, they also determined a class of
maximal inverse subsemigroups of this semigroup. Later, in 2009, all maximal and minimal congruences on T (X,Y ) were
described by Sanwong et al. [20]. Recently, all the ideals of T (X,Y ) were obtained by Mendes-Gonçalves and Sullivan in
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[15] and, for a finite set X, Fernandes and Sanwong computed the rank of T (X,Y ) [12]. On the other hand, in [21], Sullivan
considered the linear counterpart of T (X,Y ), that is the semigroup which consists of all linear transformations from a
vector space V into a fixed subspace W of V , and described its Green’s relations and ideals. If X is a chain then, being
O(X) the monoid of all endomorphisms (i.e. order-preserving mappings) of the chain X, an order-preserving counterpart
of the semigroup T (X,Y ) can also be considered, namely the semigroup O(X,Y ) = {α ∈ O(X) | Im(α) ⊆ Y }. If X = Xn

then O(X,Y ) is simply denoted by On(Y ). A description of the regular elements of O(X,Y ) and a characterization of
the regular semigroups of this type were given by Mora and Kemprasit in [17]. This semigroup was also studied by the
authors in [8] who described its largest regular subsemigroup and Green’s relations. Moreover, for finite chains, also in [8]
Fernandes et al. determined when two semigroups of the type On(Y ) are isomorphic and calculated their ranks.

In this paper, we consider the semigroups of transformations with restricted range

OPn(Y ) = {α ∈ OPn | Im(α) ⊆ Y } and ORn(Y ) = {α ∈ ORn | Im(α) ⊆ Y },

for each nonempty subset Y of Xn. We begin, in Section 1, by characterizing when two semigroups of the type OPn(Y )
and of the type ORn(Y ) are isomorphic. Section 2 is dedicated to the study of regularity and Green’s relations on OPn(Y )
and ORn(Y ). Finally, in Section 3, we determine the ranks of these semigroups.

For general background on Semigroup Theory and standard notation, we refer the reader to Howie’s book [14].

1 Isomorphism theorems and sizes

In this section we characterize the nonempty subsets Y and Z of Xn such that the semigroups OPn(Y ) and OPn(Z)
(respectively, ORn(Y ) and ORn(Z)) are isomorphic. In this context, the dihedral group D2n of order 2n plays a relevant
role. Recall that

D2n = 〈g, h | h2 = gn = hgn−1hgn−1 = 1〉 .
Moreover, if

g =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
and h =

(
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
,

we can consider the group D2n as being the subgroup of the symmetric group Sn on Xn generated by this two permutations:

D2n = {1, g, g2, . . . , gn−1, h, hg, hg2, . . . , hgn−1}.

Notice that, for j, k ∈ {1, . . . , n}, we have

(j)gk = (j + k) mod n and (j)hgk = (n− j + 1 + k) mod n. (1)

From these relations, it is easy to deduce that any two distinct permutations of {1, g, g2, . . . , gn−1} do not coincide in any
element of Xn. The same is true for any two distinct elements of {h, hg, hg2, . . . , hgn−1}. Moreover, if a permutation
of {1, g, g2, . . . , gn−1} coincides in i and j, for some 1 ≤ i < j ≤ n, with a permutation of {h, hg, hg2, . . . , hgn−1} then
n = 2(j − i). It follows that any two permutations of D2n which coincide in three elements of Xn must be equal and,
furthermore, for an odd n, any two permutations of D2n which coincide in two elements of Xn must be equal. On the
other hand, if a partial injective transformation α of Xn is a restriction of some element of D2n, then

|(j)α− (i)α| ∈ {j − i, n− (j − i)},

for i, j ∈ Dom(α), with i < j. In fact, the converse also holds:

Proposition 1.1 A partial injective transformation α of Xn is a restriction of a permutation of D2n if and only if
|(j)α− (i)α| ∈ {j − i, n− (j − i)}, for all i, j ∈ Dom(α) such that i < j.

Proof The direct implication is an immediate consequence of the equalities (1). Conversely, take a partial injective
transformation α of Xn such that |(j)α− (i)α| ∈ {j − i, n− (j − i)}, for all i, j ∈ Dom(α) with i < j.

Let i ∈ Dom(α). It is easy to check that (i)gn+iα−i = (i)α = (i)hgiα+i−1. Clearly, if |Dom(α)| ≤ 1 then the result
follows immediately. Thus, we may assume that |Dom(α)| ≥ 2.

First, suppose that Dom(α) = {i < j}. Then, it is easy to show: if (j)α− (i)α ∈ {j − i,−n+ j − i} then we also have
(j)gn+iα−i = (j)α, whence α is a restriction of gn+iα−i; on the other hand, if (j)α − (i)α ∈ {i − j, n − j + i} then also
(j)hgiα+i−1 = (j)α and so α is a restriction of hgiα+i−1.

Secondly, consider Dom(α) = {i < j < k}. Notice that (k)α − (i)α = ((k)α − (j)α) + ((j)α − (i)α). Now, it requires
only routine calculations to show that:
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1. If (j)α− (i)α = j − i then α is a restriction of gn+iα−i, unless (k)α− (j)α = j − k and n = 2(j − i), in which case
α is a restriction of hgiα+i−1;

2. If (j)α− (i)α = i− j then α is a restriction of hgiα+i−1, unless (k)α− (j)α = k − j and n = 2(j − i), in which case
α is a restriction of gn+iα−i;

3. If (j)α−(i)α = n−j+i then α is a restriction of hgiα+i−1, unless either (k)α−(j)α = k−j or (k)α−(j)α = −n+k−j
and n = 2(j − i), in which cases α is a restriction of gn+iα−i;

4. If (j)α−(i)α = −n+j−i then α is a restriction of gn+iα−i, unless either (k)α−(j)α = j−k or (k)α−(j)α = n−k+j
and n = 2(j − i), in which cases α is a restriction of hgiα+i−1.

Next, take Dom(α) = {i < j < k < `}. By the previous case, we may find permutations σ1, σ2, σ3 ∈ D2n such that the
restrictions of α to {i < j < k}, {i < k < `} and {j < k < `} are restrictions of σ1, σ2 and σ3, respectively. If σ1 6= σ2

and σ1 6= σ3 then, since σ1 and σ2 coincide in {i < k} and σ1 and σ3 coincide in {j < k}, we have n = 2(k − i) and
n = 2(k − j), whence i = j, which is a contradiction. Thus σ1 = σ2 or σ1 = σ3 and so α is a restriction of σ1.

Finally, suppose that |Dom(α)| = m ≥ 5 and admit, by induction hypothesis, that any partial injective transfor-
mation β of Xn such that |Dom(β)| = m − 1 and |(j)β − (i)β| ∈ {j − i, n − (j − i)}, for all i, j ∈ Dom(β) with
i < j, is a restriction of a permutation of D2n. Let σ1, σ2 ∈ D2n be such that the restrictions of α to Dom(α) \
{min(Dom(α))} and Dom(α) \ {max(Dom(α))} are restrictions of σ1 and σ2, respectively. Then σ1 and σ2 coincide in
Dom(α) \ {min(Dom(α)),max(Dom(α))}, a set with m − 2 ≥ 3 elements, whence σ1 = σ2. Thus α is a restriction of a
permutation of D2n, as required. �

Let x ∈ Xn. We denote by Cx the constant transformation of Tn with image {x}. Observe that, given α ∈ Tn, we have

Cxα = Cxα (2)

and
αCx = Cx. (3)

These immediate equalities allow us to easily deduce the following properties.

Lemma 1.2 Let Y and Z be nonempty subsets of Xn and let Θ : OPn(Y ) −→ OPn(Z) be an isomorphism. Then:

1. For all y ∈ Y there exists (a unique) z ∈ Z such that CyΘ = Cz;

2. Θ induces a bijection θ : Y −→ Z defined by CyΘ = Cyθ, for all y ∈ Y ;

3. (yθ)(αΘ) = (yα)θ, for all y ∈ Y and α ∈ OPn(Y );

4. Im(αΘ) = (Im(α))θ, for any idempotent α ∈ OPn(Y ).

Proof Let y ∈ Y . Then, by (3) we have αCy = Cy, for all α ∈ OPn(Y ), whence (αΘ)(CyΘ) = αCyΘ = CyΘ, for all
α ∈ OPn(Y ). Since Θ is surjective, it follows that β(CyΘ) = CyΘ, for all β ∈ OPn(Z). In particular, given (any) x ∈ Z,
we obtain CyΘ = Cx(CyΘ) = C(x)(CyΘ), using also equality (2). Thus CyΘ = Cz, with z = (x)(CyΘ) ∈ Z (which does not
depend of the taken x ∈ Z, since Θ is a function).

Therefore, we proved property 1 and so we have a well defined function θ : Y −→ Z satisfying the equality CyΘ = Cyθ,
for all y ∈ Y . A similar reasoning applied to the inverse isomorphism Θ−1 : OPn(Z) −→ OPn(Y ) allows us to deduce
the existence of a function θ′ : Z −→ Y satisfying the equality CzΘ

−1 = Czθ′ , for all z ∈ Z. Moreover, we have
Cy = CyΘΘ−1 = CyθΘ

−1 = Cyθθ′ , for all y ∈ Y , and similarly Cz = Czθ′θ, for all z ∈ Z, which shows that θ and θ′ are
mutually inverse bijections. Thus, we just proved 2.

Next, we prove property 3. Let y ∈ Y and α ∈ OPn(Y ). Then

C(yθ)(αΘ) = Cyθ(αΘ) = (CyΘ)(αΘ) = (Cyα)Θ = CyαΘ = C(yα)θ,

by using equality (2), the definition of θ and the fact that Θ is a homomorphism, whence (yθ)(αΘ) = (yα)θ.
It remains to prove 4. Let α be an idempotent of OPn(Y ). Then αΘ is an idempotent of OPn(Z) and so Im(αΘ) =

Fix(αΘ). Let z ∈ Im(αΘ) ⊆ Z. Then z = z(αΘ) and, on the other hand, z = yθ, for some y ∈ Y . Hence, by
property 3, z = z(αΘ) = (yθ)(αΘ) = (yα)θ ∈ (Im(α))θ. Conversely, let z ∈ (Im(α))θ. Then z = yθ, for some
y ∈ Im(α) ⊆ Y . As α is an idempotent (hence Im(α) = Fix(α)), we have y = yα and so, by using property 3, we obtain
z = yθ = (yα)θ = (yθ)(αΘ) = z(αΘ) ∈ Im(αΘ). Thus Im(αΘ) = (Im(α))θ, as required. �
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Theorem 1.3 Let Y and Z be nonempty subsets of Xn. Then OPn(Y ) and OPn(Z) are isomorphic if and only if there
exists σ ∈ D2n such that Y σ = Z.

Proof If there exists σ ∈ D2n such that Y σ = Z, then it is easy to show that the mapping OPn(Y ) → OPn(Z),
α 7→ σ−1ασ, is an isomorphism. Conversely, suppose there exists an isomorphism Θ : OPn(Y ) −→ OPn(Z) and let
θ : Y −→ Z be the bijection induced by Θ given by Lemma 1.2. Let i, j ∈ Y be such that i < j. Take

A(i, j) = {α ∈ OPn(Y ) | α = α2 and Im(α) = {i < j}}.

Then, by Lemma 1.2, we have

A(i, j)Θ = {β ∈ OPn(Z) | β = β2 and Im(β) = {iθ, jθ}}.

Moreover, by enumerating their elements, it is not difficult to conclude that |A(i, j)| = (j− i)(n− (j− i)) and |A(i, j)Θ| =
|jθ− iθ|(n−|jθ− iθ|). As Θ is an isomorphism, we get |A(i, j)Θ| = |A(i, j)|, i.e. (j− i)(n−(j− i)) = |jθ− iθ|(n−|jθ− iθ|),
whence |jθ − iθ| = j − i or |jθ − iθ| = n− (j − i). Therefore, by Proposition 1.1, it follows that θ is a restriction of some
permutation σ of D2n and so Z = Y θ = Y σ, as required. �

Now, observing that we can replace OPn by ORn in the proof of both Lemma 1.2 and Theorem 1.3 (also observe that
all the idempotents of ORn belong to OPn), we obtain an analogous characterization:

Theorem 1.4 Let Y and Z be nonempty subsets of Xn. Then ORn(Y ) and ORn(Z) are isomorphic if and only if there
exists σ ∈ D2n such that Y σ = Z.

We finish this section by determining the cardinality of OPn(Y ) and ORn(Y ), for each nonempty subset Y of Xn.

Recall that Catarino and Higgins showed in [4] that |OPn| = n
(

2n−1
n−1

)
−n(n−1) and |ORn| = n

(
2n
n

)
− n2

2 (n2−2n+5)+n.
One of the methods used by Catarino and Higgins to find this formula for |OPn| consisted of counting the number of
transformations of rank k, for 1 ≤ k ≤ n. In fact, they showed that, for 2 ≤ k ≤ n, the number of transformations with a
fixed image of size k is k

(
n
k

)
. In addition, OPn has n constant transformations.

Now, let Y be a subset of Xn, with 1 ≤ |Y | = r ≤ n. Since the number of distinct images contained in Y of size k is(
r
k

)
, we get

|{α ∈ OPn(Y ) | | Im(α)| = k}| = k

(
n

k

)(
r

k

)
,

for 2 ≤ k ≤ r. As OPn(Y ) also contains r constant transformations, it follows that

|OPn(Y )| = r +

r∑
k=2

k

(
r

k

)(
n

k

)
=

r∑
k=1

k

(
r

k

)(
n

k

)
− r(n− 1).

Noticing that
∑r
k=1 k

(
r
k

)(
n
k

)
= r
(
n+r−1

r

)
(Combinatorial Identity (3.30) of [13, page 25]), we obtain:

Theorem 1.5 Let Y be a subset of Xn of size r, for 1 ≤ r ≤ n. Then |OPn(Y )| = r
(
n+r−1

r

)
− r(n− 1).

Regarding ORn, Catarino and Higgins [4] proved that, for 3 ≤ k ≤ n, the number of transformations with a fixed
image of size k is 2k

(
n
k

)
. Moreover, they also observed that {α ∈ ORn | | Im(α)| ≤ 2} = {α ∈ OPn | | Im(α)| ≤ 2}.

Therefore

|ORn(Y )| = r + 2

(
r

2

)(
n

2

)
+

r∑
k=3

2k

(
r

k

)(
n

k

)
= 2

r∑
k=1

k

(
r

k

)(
n

k

)
− 2

(
r

2

)(
n

2

)
− 2rn+ r

and so, by using again the above combinatorial identity, we obtain:

Theorem 1.6 Let Y be a subset of Xn of size r, for 1 ≤ r ≤ n. Then |ORn(Y )| = 2r
(
n+r−1

r

)
− rn

2 (rn− r − n+ 5) + r.

Notice that the sizes of OPn(Y ) and ORn(Y ) just depend of the size of Y .
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2 Regularity and Green’s relations

Recall that Catarino and Higgins showed in [4] that both OPn and ORn are regular semigroups. Thus, Green’s relations
L and R in OPn and in ORn are just restrictions of the correspondent relations in Tn. This is also the case for Green’s
relation D, as proved by Catarino and Higgins in [4]. Therefore, if α, β ∈ OPn [respectively, α, β ∈ ORn], we have

1. αLβ if and only if Im(α) = Im(β),

2. αRβ if and only if Ker(α) = Ker(β) and

3. αDβ if and only if | Im(α)| = | Im(β)|,

in OPn [respectively, ORn]. Regarding Green’s relation H, if α is an element of OPn of rank k, for 1 ≤ k ≤ n, then
the H-class in OPn of α has k elements (all with the same domain and image); in particular, the H-class in OPn of an
idempotent of rank k, for 1 ≤ k ≤ n, is a cycle group of order k; if α is an element of ORn of rank k, for 3 ≤ k ≤ n, then
the H-class in ORn of α has 2k elements (all with the same domain and image); in particular, the H-class in ORn of an
idempotent of rank k, for 3 ≤ k ≤ n, is a dihedral group of order 2k; if α is an element of ORn of rank 1 or 2, then the
H-class in ORn of α has 1 or 2 elements (all with the same domain and image), respectively; in particular, the H-class
in ORn of an idempotent of rank 1 or 2 is a cycle group of order 1 or 2, respectively. These facts were proved in [4]. See
also [16].

Let Y be a nonempty subset of Xn of size r (1 ≤ r ≤ n). In this section we discuss regularity and give descriptions for
Green’s relations of OPn(Y ) and ORn(Y ).

Let
FOPn(Y ) = {α ∈ OPn(Y ) | Im(α) = Y α}

and
FORn(Y ) = {α ∈ ORn(Y ) | Im(α) = Y α}.

Clearly FOPn(Y ) and FORn(Y ) are right ideals of OPn(Y ) and ORn(Y ), respectively. In fact, we will show that these
subsets determine relevant aspects of the structure of OPn(Y ) and ORn(Y ). Regarding the regularity, we have:

Theorem 2.1 Let Y be a nonempty subset of Xn. Then FOPn(Y ) [respectively, FORn(Y )] is the set of all regular
elements of OPn(Y ) [respectively, ORn(Y )]. Furthermore:

1. FOPn(Y ) [respectively, FORn(Y )] is the largest regular subsemigroup of OPn(Y ) [respectively, ORn(Y )];

2. OPn(Y ) [respectively, ORn(Y )] is regular if and only if |Y | = 1 or Y = Xn.

Proof If α is a regular element of OPn(Y ) [respectively, ORn(Y )], then α = αβα, for some β ∈ OPn(Y ) [respectively,
β ∈ ORn(Y )], whence Xα = (Xαβ)α ⊆ Y α and so Xα = Y α, i.e. α ∈ FOPn(Y ) [respectively, α ∈ FORn(Y )].

Conversely, take α ∈ FOPn(Y ) [respectively, α ∈ FORn(Y )] and suppose that Im(α) = {a1 < · · · < ak}, for some
a1, . . . , ak ∈ Y , with 1 ≤ k ≤ |Y |. Then there exist b1, . . . , bk ∈ Y such that biα = ai, for 1 ≤ i ≤ k. Let β be the
transformation of Xn defined by

xβ =

{
bk if 1 ≤ x < a1 or ak ≤ x ≤ n
bj if aj ≤ x < aj+1 and 1 ≤ j ≤ k − 1 .

It is easy to check that β ∈ OPn(Y ) [respectively, β ∈ ORn(Y )] and α = αβα. Thus α is a regular element of OPn(Y )
[respectively, ORn(Y )].

Hence, we proved that FOPn(Y ) [respectively, FORn(Y )] is the set of all regular elements of OPn(Y ) [respectively,
ORn(Y )].

Statement 1 is obvious, since FOPn(Y ) and FORn(Y ) are subsemigroups of OPn(Y ) and ORn(Y ), respectively.
Regarding statement 2, if Y is a proper subset of Xn such that |Y | ≥ 2 then we may consider two distinct elements

y, y′ ∈ Y and an element z ∈ Xn \ Y . Thus, we define a transformation α on Xn by xα = y, if x = z, and xα = y′, if
x ∈ Xn \ {z}. Clearly, α ∈ OPn(Y ) and, since Im(α) = {y, y′} and Y α = {y′}, α is not regular both in OPn(Y ) and
ORn(Y ). For the converse, we already recalled that OPn = OPn(Xn) and ORn = ORn(Xn) are regular semigroups
and, on the other hand, if |Y | = 1 then OPn(Y ) = ORn(Y ) is trivial (it is just formed by the constant mapping with
range Y ), whence a regular semigroup, as required. �

We finish this section with the following characterization of Green’s relations in OPn(Y ) and in ORn(Y ):
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Theorem 2.2 Let Y be a nonempty subset of Xn of size r. Let S = OPn(Y ) or S = ORn(Y ). Let α, β ∈ S. Then:

1. αLβ in S if and only if either α = β or both α and β are regular and Im(α) = Im(β);

2. αRβ in S if and only if Ker(α) = Ker(β);

3. αDβ in S if and only if either (i) both α and β are regular and | Im(α)| = | Im(β)| or (ii) both α and β are not
regular and Ker(α) = Ker(β);

4. If α is a non regular element of OPn(Y ) then the H-class in OPn(Y ) of α is trivial; if α is a regular element of
OPn(Y ) of rank k, for 1 ≤ k ≤ r, then the H-class in OPn(Y ) of α has k elements (all with the same domain and
image); in particular, the H-class in OPn(Y ) of an idempotent of rank k, for 1 ≤ k ≤ r, is a cycle group of order k;

5. If α is a non regular element of ORn(Y ) then the H-class in ORn(Y ) of α is trivial; if α is a regular element of
ORn(Y ) of rank k, for 3 ≤ k ≤ r, then the H-class in ORn(Y ) of α has 2k elements (all with the same domain
and image); in particular, the H-class in ORn(Y ) of an idempotent of rank k, for 3 ≤ k ≤ r, is a dihedral group of
order 2k; if α is a regular element of ORn(Y ) of rank 1 or 2, then the H-class in ORn(Y ) of α has 1 or 2 elements
(all with the same domain and image), respectively; in particular, the H-class in ORn(Y ) of an idempotent of rank
1 or 2 is a cycle group of order 1 or 2, respectively.

Proof 1. First, suppose that αLβ in S. Then α = γβ and β = λα, for some γ, λ ∈ S1. If α 6= β then γ 6= 1 and λ 6= 1,
whence Xα = Xγβ ⊆ Y β ⊆ Xβ = Xλα ⊆ Y α ⊆ Xα and so Im(α) = Y α = Y β = Im(β), i.e. α and β are regular and
Im(α) = Im(β).

The converse is obvious, since Im(α) = Im(β) implies αLβ in Tn and so, being either α = β or α and β are regular
elements in S, it follows that αLβ in S (in fact, no matter who is the subsemigroup S of Tn).

2. If αRβ in S then αRβ in Tn and so Ker(α) = Ker(β).
In order to prove the converse, it is useful to introduce the following notation. Let I = {i1 < · · · < ik} be a nonempty

subset of Xn (1 ≤ k ≤ n). Define the transformation ιI of Tn by

xιI =

{
ik if 1 ≤ x < i1 or ik ≤ x ≤ n
ij if ij ≤ x < ij+1 and 1 ≤ j ≤ k − 1 .

Clearly, ιI is an idempotent of OPn with image (fixed points) I. In particular, if I ⊆ Y then ιI ∈ OPn(Y ).
Now, take T = OPn for S = OPn(Y ) and T = ORn for S = ORn(Y ). Suppose that Ker(α) = Ker(β). Then

αRβ in T and so α = βγ and β = αλ, for some γ, λ ∈ T . Thus, it is clear that we also have α = βιIm(β)γ and
β = αιIm(α)λ. Moreover, since ιIm(β)γ and ιIm(α)λ have the same rank of α (and β), it follows that Im(ιIm(β)γ) = Im(α)
and Im(ιIm(α)λ) = Im(β), whence ιIm(β)γ, ιIm(α)λ ∈ S and so αRβ in S.

3. If αDβ in S then there exists γ ∈ S such that αLγ and γRβ in S. On the other hand, we also have αDβ in
Tn and so | Im(α)| = | Im(β)|. Moreover, as in any semigroup, either both α and β are regular or both α and β are
non regular. Hence, in case both α and β are non regular, it follows that γ is also non regular and thus α = γ and
Ker(α) = Ker(γ) = Ker(β).

Conversely, if (both α and β are not regular and) Ker(α) = Ker(β) then αRβ in S and so αDβ in S. On the other
hand, suppose that both α and β are regular and | Im(α)| = | Im(β)|. Then αDβ in T (with T as defined above) and so
α = γ1βγ2 and β = λ1αλ2, for some γ1, γ2, λ1, λ2 ∈ T . Let β′ ∈ S be an inverse of β. Then α = (γ1ββ

′)β(β′βγ2). Clearly,
γ1ββ

′ ∈ S. On the other hand, since β′βγ2 has the same rank as α, it should have the same image as α, whence also
β′βγ2 ∈ S. Similarly, if α′ ∈ S is an inverse of α then β = (λ1αα

′)α(α′αλ2) and λ1αα
′, α′αλ2 ∈ S. Thus, also in this

case, αDβ in S.

Properties 4 and 5 are immediate, since L-classes in S of non regular elements are trivial and it is clear that H-classes
in T (with T as defined above) of regular elements of S must coincide with the respective H-classes in S. �

3 Ranks

Let Y be a nonempty subset of Xn. In this section we determine the ranks of the semigroups OPn(Y ) and ORn(Y ).
Surprisingly, as opposed to the case of On(Y ) [8], we will show that the ranks of OPn(Y ) and ORn(Y ) only depend of
the size of Y .

It is well known that OPn and ORn have, respectively, ranks 2 and 3 (see [2, 4]). Therefore, in what follows, we
suppose that Y is a proper subset of Xn. Let r = |Y |.

We begin by showing that OPn(Y ) is generated by its elements of rank r.
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Lemma 3.1 Any transformation of OPn(Y ) of rank k is a product of two elements of OPn(Y ) of rank k+1, for 1 ≤ k < r.

Proof Let α be an element of OPn(Y ) of rank k. By [4, Theorem 2.6], there exist β ∈ On and 0 ≤ t < n such that
α = gtβ, where g is the permutation of Xn defined in Section 1. Since gt is a permutation, then Im(β) = Im(α) and so,
in addition, β ∈ On(Y ). Now, by [8, Lemma 3.5], there exist transformations β1, β2 ∈ On(Y ) of rank k + 1 such that
β = β1β2. Let α1 = gtβ1. Then β1 ∈ OPn. Again, since gt is a permutation, we have Im(α1) = Im(β1), whence α1 is
an element of OPn(Y ) with rank k + 1. Thus, α = α1β2, with both α1 and β2 elements of OPn(Y ) of rank k + 1, as
required. �

From this lemma, it follows immediately that OPn(Y ) is generated by its elements of rank r.

Now, suppose that Y = {y1 < y2 < · · · < yr}. Let

ĝY =

(
A1 A2 · · · Ar−1 Ar
y2 y3 · · · yr y1

)
∈ OPn(Y ),

where Aj = {yj , . . . , yj+1 − 1}, 1 ≤ j ≤ r − 1, and Ar = {yr, . . . , n, 1, . . . , y1 − 1}.

Lemma 3.2 Let α, β ∈ OPn(Y ) be two elements of rank r such that Ker(β) = Ker(α). Then β = αĝkY , for some
k ∈ {0, . . . , r − 1}.

Proof Suppose that I1, I2, . . . , Ik are the kernel classes of α (and β) in order max Ii < max Ii+1, for i = 1, . . . , r−1. Then

α =

(
I1 I2 · · · Ir−i Ir−i+1 Ir−i+2 · · · Ir
yi+1 yi+2 · · · yr y1 y2 · · · yi

)
and

β =

(
I1 I2 · · · Ir−j Ir−j+1 Ir−j+2 · · · Ir
yj+1 yj+2 · · · yr y1 y2 · · · yj

)
,

for some 1 ≤ i, j ≤ r. Take k = j − i, if i ≤ j, and k = r − i + j, otherwise. Hence, it is a routine matter to prove that
β = αĝkY , as required. �

Now, notice that any generating set of OPn(Y ) (and of ORn(Y )) must contain at least one element from each distinct
kernel of transformations of rank r. On the other hand, the number of distinct kernels of transformations of OPn(Y )
(and of ORn(Y )) of rank r coincides with the number of distinct kernels of transformations of OPn of rank r, which is
precisely

(
n
r

)
(see [4]). These observations, together with the previous two lemmas, prove the following result.

Theorem 3.3 The semigroup OPn(Y ) is generated by any subset of transformations of rank r containing ĝY and at least
one element from each distinct kernel. Furthermore, OPn(Y ) has rank equal to

(
n
r

)
.

Next, let

h̃Y =

(
B1 B2 · · · Br−1 Br
yr yr−1 · · · y2 y1

)
∈ ORn(Y ),

where B1 = {1, . . . , y1, yr + 1, . . . , n} and Bj = {yj−1 + 1, . . . , yj}, 2 ≤ j ≤ r.
Notice that

Ker(h̃Y ) = Ker(ĝY ) ⇐⇒ Bj = Aj , 1 ≤ j ≤ r ⇐⇒ Bj = Aj = {yj}, 1 ≤ j ≤ r ⇐⇒ r = n,

whence h̃Y and ĝY have distinct kernels. On the other hand, clearly

h̃2
Y =

(
B1 B2 · · · Br−1 Br
y1 y2 · · · yr−1 yr

)
∈ OPn(Y )

is a right identity of ORn(Y ). Thus, if α ∈ ORn(Y ) \ OPn(Y ) then α = (αh̃Y )h̃Y , with Ker(α) = Ker(αh̃Y ) and

αh̃Y ∈ OPn(Y ). Therefore, it is easy to conclude:

Theorem 3.4 The semigroup ORn(Y ) is generated by any subset of transformations of rank r containing both ĝY and

h̃Y and at least one element from each distinct kernel. Furthermore, ORn(Y ) has rank equal to
(
n
r

)
.
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