On semigroups of orientation-preserving transformations with restricted range

Vítor H. Fernandes,* Preeyanuch Honyam, Teresa M. Quinteiro ${ }^{\dagger}$ and Boorapa Singha

October 1, 2014

Abstract

Let X_{n} be a chain with n elements $(n \in \mathbb{N})$ and let $\mathcal{O} \mathcal{P}_{n}$ be the monoid of all orientation-preserving transformations of X_{n}. In this paper, for any nonempty subset Y of X_{n}, we consider the subsemigroup $\mathcal{O} \mathcal{P}_{n}(Y)$ of $\mathcal{O} \mathcal{P}_{n}$ of all transformations with range contained in Y : we describe the largest regular subsemigroup of $\mathcal{O} \mathcal{P}_{n}(Y)$, which actually coincides with its subset of all regular elements. Also, we determine when two semigroups of the type $\mathcal{O P}_{n}(Y)$ are isomorphic and calculate their ranks. Moreover, a parallel study is presented for the correspondent subsemigroups of the monoid $\mathcal{O} \mathcal{R}_{n}$ of all either orientation-preserving or orientation-reversing transformations of X_{n}.

2000 Mathematics subject classification: 20M20, 20M10.
Keywords: transformations, orientation-preserving, orientation-reversing, restricted range, rank.

Introduction and preliminaries

Let X be a nonempty set and denote by $\mathcal{T}(X)$ the monoid (under composition) of all full transformations on X. Let $n \in \mathbb{N}$. Let X_{n} be a chain with n elements, say $X_{n}=\{1<2<\cdots<n\}$, and denote the monoid $\mathcal{T}\left(X_{n}\right)$ simply by \mathcal{T}_{n}. Let $a=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be a sequence of $t(t \geq 0)$ elements from the chain X_{n}. We say that a is cyclic [respectively, anti-cyclic] if there exists no more than one index $i \in\{1, \ldots, t\}$ such that $a_{i}>a_{i+1}$ [respectively, $a_{i}<a_{i+1}$], where a_{t+1} denotes a_{1}. Let $\alpha \in \mathcal{T}_{n}$. We say that α is an orientation-preserving [respectively, orientation-reversing] transformation if the sequence of its images $(1 \alpha, \ldots, n \alpha)$ is cyclic [respectively, anti-cyclic]. It is easy to check that the product of two orientation-preserving or of two orientation-reversing transformations is orientation-preserving and the product of an orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing. Denote by $\mathcal{O} \mathcal{P}_{n}$ the submonoid of \mathcal{T}_{n} whose elements are orientation-preserving and by $\mathcal{O} \mathcal{R}_{n}$ the submonoid of \mathcal{T}_{n} whose elements are either orientation-preserving or orientation-reversing.

The notion of an orientation-preserving transformation was introduced by McAlister in [16] and, independently, by Catarino and Higgins in [4]. Several properties of the monoids $\mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$ have been investigated in these two papers. A presentation for the monoid $\mathcal{O} \mathcal{P}_{n}$, in terms of $2 n-1$ generators, was given by Catarino in [3]. Another presentation for $\mathcal{O} \mathcal{P}_{n}$, in terms of 2 (its rank) generators, was found by Arthur and Ruškuc [2], who also exhibited a presentation for the monoid $\mathcal{O} \mathcal{R}_{n}$, in terms of 3 (its rank) generators. The congruences of the monoids $\mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$ were completely described by Fernandes et al. in [6]. Semigroups of orientation-preserving transformations were also studied in several recent papers (e.g. see $[1,5,7,9,10,11,23]$).

Let Y be a nonempty subset of X and denote by $\mathcal{T}(X, Y)$ the subsemigroup $\{\alpha \in \mathcal{T}(X) \mid \operatorname{Im}(\alpha) \subseteq Y\}$ of $\mathcal{T}(X)$ of all elements with range (image) restricted to Y.

In 1975, Symons [22] introduced and studied the semigroup $\mathcal{T}(X, Y)$. He described all the automorphisms of $\mathcal{T}(X, Y)$ and also determined when two semigroups of this type are isomorphic. In [18], Nenthein et al. characterized the regular elements of $\mathcal{T}(X, Y)$ and, in [19], Sanwong and Sommanee obtained the largest regular subsemigroup of $\mathcal{T}(X, Y)$ and showed that this subsemigroup determines Green's relations on $\mathcal{T}(X, Y)$. Moreover, they also determined a class of maximal inverse subsemigroups of this semigroup. Later, in 2009, all maximal and minimal congruences on $\mathcal{T}(X, Y)$ were described by Sanwong et al. [20]. Recently, all the ideals of $\mathcal{T}(X, Y)$ were obtained by Mendes-Gonçalves and Sullivan in

[^0][15] and, for a finite set X, Fernandes and Sanwong computed the rank of $\mathcal{T}(X, Y)$ [12]. On the other hand, in [21], Sullivan considered the linear counterpart of $\mathcal{T}(X, Y)$, that is the semigroup which consists of all linear transformations from a vector space V into a fixed subspace W of V, and described its Green's relations and ideals. If X is a chain then, being $\mathcal{O}(X)$ the monoid of all endomorphisms (i.e. order-preserving mappings) of the chain X, an order-preserving counterpart of the semigroup $\mathcal{T}(X, Y)$ can also be considered, namely the semigroup $\mathcal{O}(X, Y)=\{\alpha \in \mathcal{O}(X) \mid \operatorname{Im}(\alpha) \subseteq Y\}$. If $X=X_{n}$ then $\mathcal{O}(X, Y)$ is simply denoted by $\mathcal{O}_{n}(Y)$. A description of the regular elements of $\mathcal{O}(X, Y)$ and a characterization of the regular semigroups of this type were given by Mora and Kemprasit in [17]. This semigroup was also studied by the authors in [8] who described its largest regular subsemigroup and Green's relations. Moreover, for finite chains, also in [8] Fernandes et al. determined when two semigroups of the type $\mathcal{O}_{n}(Y)$ are isomorphic and calculated their ranks.

In this paper, we consider the semigroups of transformations with restricted range

$$
\mathcal{O} \mathcal{P}_{n}(Y)=\left\{\alpha \in \mathcal{O} \mathcal{P}_{n} \mid \operatorname{Im}(\alpha) \subseteq Y\right\} \quad \text { and } \quad \mathcal{O} \mathcal{R}_{n}(Y)=\left\{\alpha \in \mathcal{O} \mathcal{R}_{n} \mid \operatorname{Im}(\alpha) \subseteq Y\right\}
$$

for each nonempty subset Y of X_{n}. We begin, in Section 1, by characterizing when two semigroups of the type $\mathcal{O} \mathcal{P}_{n}(Y)$ and of the type $\mathcal{O} \mathcal{R}_{n}(Y)$ are isomorphic. Section 2 is dedicated to the study of regularity and Green's relations on $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$. Finally, in Section 3, we determine the ranks of these semigroups.

For general background on Semigroup Theory and standard notation, we refer the reader to Howie's book [14].

1 Isomorphism theorems and sizes

In this section we characterize the nonempty subsets Y and Z of X_{n} such that the semigroups $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{P}_{n}(Z)$ (respectively, $\mathcal{O} \mathcal{R}_{n}(Y)$ and $\left.\mathcal{O} \mathcal{R}_{n}(Z)\right)$ are isomorphic. In this context, the dihedral group $\mathcal{D}_{2 n}$ of order $2 n$ plays a relevant role. Recall that

$$
\mathcal{D}_{2 n}=\left\langle g, h \mid h^{2}=g^{n}=h g^{n-1} h g^{n-1}=1\right\rangle
$$

Moreover, if

$$
g=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
2 & 3 & \cdots & n & 1
\end{array}\right) \quad \text { and } \quad h=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
n & n-1 & \cdots & 2 & 1
\end{array}\right)
$$

we can consider the group $\mathcal{D}_{2 n}$ as being the subgroup of the symmetric group \mathcal{S}_{n} on X_{n} generated by this two permutations:

$$
\mathcal{D}_{2 n}=\left\{1, g, g^{2}, \ldots, g^{n-1}, h, h g, h g^{2}, \ldots, h g^{n-1}\right\}
$$

Notice that, for $j, k \in\{1, \ldots, n\}$, we have

$$
\begin{equation*}
(j) g^{k}=(j+k) \bmod n \quad \text { and } \quad(j) h g^{k}=(n-j+1+k) \bmod n \tag{1}
\end{equation*}
$$

From these relations, it is easy to deduce that any two distinct permutations of $\left\{1, g, g^{2}, \ldots, g^{n-1}\right\}$ do not coincide in any element of X_{n}. The same is true for any two distinct elements of $\left\{h, h g, h g^{2}, \ldots, h g^{n-1}\right\}$. Moreover, if a permutation of $\left\{1, g, g^{2}, \ldots, g^{n-1}\right\}$ coincides in i and j, for some $1 \leq i<j \leq n$, with a permutation of $\left\{h, h g, h g^{2}, \ldots, h g^{n-1}\right\}$ then $n=2(j-i)$. It follows that any two permutations of $\mathcal{D}_{2 n}$ which coincide in three elements of X_{n} must be equal and, furthermore, for an odd n, any two permutations of $\mathcal{D}_{2 n}$ which coincide in two elements of X_{n} must be equal. On the other hand, if a partial injective transformation α of X_{n} is a restriction of some element of $\mathcal{D}_{2 n}$, then

$$
|(j) \alpha-(i) \alpha| \in\{j-i, n-(j-i)\}
$$

for $i, j \in \operatorname{Dom}(\alpha)$, with $i<j$. In fact, the converse also holds:
Proposition 1.1 A partial injective transformation α of X_{n} is a restriction of a permutation of $\mathcal{D}_{2 n}$ if and only if $|(j) \alpha-(i) \alpha| \in\{j-i, n-(j-i)\}$, for all $i, j \in \operatorname{Dom}(\alpha)$ such that $i<j$.

Proof The direct implication is an immediate consequence of the equalities (1). Conversely, take a partial injective transformation α of X_{n} such that $|(j) \alpha-(i) \alpha| \in\{j-i, n-(j-i)\}$, for all $i, j \in \operatorname{Dom}(\alpha)$ with $i<j$.

Let $i \in \operatorname{Dom}(\alpha)$. It is easy to check that $(i) g^{n+i \alpha-i}=(i) \alpha=(i) h g^{i \alpha+i-1}$. Clearly, if $|\operatorname{Dom}(\alpha)| \leq 1$ then the result follows immediately. Thus, we may assume that $|\operatorname{Dom}(\alpha)| \geq 2$.

First, suppose that $\operatorname{Dom}(\alpha)=\{i<j\}$. Then, it is easy to show: if $(j) \alpha-(i) \alpha \in\{j-i,-n+j-i\}$ then we also have $(j) g^{n+i \alpha-i}=(j) \alpha$, whence α is a restriction of $g^{n+i \alpha-i}$; on the other hand, if $(j) \alpha-(i) \alpha \in\{i-j, n-j+i\}$ then also $(j) h g^{i \alpha+i-1}=(j) \alpha$ and so α is a restriction of $h g^{i \alpha+i-1}$.

Secondly, consider $\operatorname{Dom}(\alpha)=\{i<j<k\}$. Notice that $(k) \alpha-(i) \alpha=((k) \alpha-(j) \alpha)+((j) \alpha-(i) \alpha)$. Now, it requires only routine calculations to show that:

1. If $(j) \alpha-(i) \alpha=j-i$ then α is a restriction of $g^{n+i \alpha-i}$, unless $(k) \alpha-(j) \alpha=j-k$ and $n=2(j-i)$, in which case α is a restriction of $h g^{i \alpha+i-1}$;
2. If $(j) \alpha-(i) \alpha=i-j$ then α is a restriction of $h g^{i \alpha+i-1}$, unless $(k) \alpha-(j) \alpha=k-j$ and $n=2(j-i)$, in which case α is a restriction of $g^{n+i \alpha-i}$;
3. If $(j) \alpha-(i) \alpha=n-j+i$ then α is a restriction of $h g^{i \alpha+i-1}$, unless either $(k) \alpha-(j) \alpha=k-j$ or $(k) \alpha-(j) \alpha=-n+k-j$ and $n=2(j-i)$, in which cases α is a restriction of $g^{n+i \alpha-i}$;
4. If $(j) \alpha-(i) \alpha=-n+j-i$ then α is a restriction of $g^{n+i \alpha-i}$, unless either $(k) \alpha-(j) \alpha=j-k$ or $(k) \alpha-(j) \alpha=n-k+j$ and $n=2(j-i)$, in which cases α is a restriction of $h g^{i \alpha+i-1}$.

Next, take $\operatorname{Dom}(\alpha)=\{i<j<k<\ell\}$. By the previous case, we may find permutations $\sigma_{1}, \sigma_{2}, \sigma_{3} \in \mathcal{D}_{2 n}$ such that the restrictions of α to $\{i<j<k\},\{i<k<\ell\}$ and $\{j<k<\ell\}$ are restrictions of σ_{1}, σ_{2} and σ_{3}, respectively. If $\sigma_{1} \neq \sigma_{2}$ and $\sigma_{1} \neq \sigma_{3}$ then, since σ_{1} and σ_{2} coincide in $\{i<k\}$ and σ_{1} and σ_{3} coincide in $\{j<k\}$, we have $n=2(k-i)$ and $n=2(k-j)$, whence $i=j$, which is a contradiction. Thus $\sigma_{1}=\sigma_{2}$ or $\sigma_{1}=\sigma_{3}$ and so α is a restriction of σ_{1}.

Finally, suppose that $|\operatorname{Dom}(\alpha)|=m \geq 5$ and admit, by induction hypothesis, that any partial injective transformation β of X_{n} such that $|\operatorname{Dom}(\beta)|=m-1$ and $|(j) \beta-(i) \beta| \in\{j-i, n-(j-i)\}$, for all $i, j \in \operatorname{Dom}(\beta)$ with $i<j$, is a restriction of a permutation of $\mathcal{D}_{2 n}$. Let $\sigma_{1}, \sigma_{2} \in \mathcal{D}_{2 n}$ be such that the restrictions of α to $\operatorname{Dom}(\alpha) \backslash$ $\{\min (\operatorname{Dom}(\alpha))\}$ and $\operatorname{Dom}(\alpha) \backslash\{\max (\operatorname{Dom}(\alpha))\}$ are restrictions of σ_{1} and σ_{2}, respectively. Then σ_{1} and σ_{2} coincide in $\operatorname{Dom}(\alpha) \backslash\{\min (\operatorname{Dom}(\alpha)), \max (\operatorname{Dom}(\alpha))\}$, a set with $m-2 \geq 3$ elements, whence $\sigma_{1}=\sigma_{2}$. Thus α is a restriction of a permutation of $\mathcal{D}_{2 n}$, as required.

Let $x \in X_{n}$. We denote by \mathcal{C}_{x} the constant transformation of \mathcal{T}_{n} with image $\{x\}$. Observe that, given $\alpha \in \mathcal{T}_{n}$, we have

$$
\begin{equation*}
\mathcal{C}_{x} \alpha=\mathfrak{C}_{x \alpha} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \complement_{x}=\mathfrak{C}_{x} \tag{3}
\end{equation*}
$$

These immediate equalities allow us to easily deduce the following properties.
Lemma 1.2 Let Y and Z be nonempty subsets of X_{n} and let $\Theta: \mathcal{O} \mathcal{P}_{n}(Y) \longrightarrow \mathcal{O} \mathcal{P}_{n}(Z)$ be an isomorphism. Then:

1. For all $y \in Y$ there exists (a unique) $z \in Z$ such that $\mathcal{C}_{y} \Theta=\mathcal{C}_{z}$;
2. Θ induces a bijection $\theta: Y \longrightarrow Z$ defined by $\mathcal{C}_{y} \Theta=\mathcal{C}_{y \theta}$, for all $y \in Y$;
3. $(y \theta)(\alpha \Theta)=(y \alpha) \theta$, for all $y \in Y$ and $\alpha \in \mathcal{O P}_{n}(Y)$;
4. $\operatorname{Im}(\alpha \Theta)=(\operatorname{Im}(\alpha)) \theta$, for any idempotent $\alpha \in \mathcal{O} \mathcal{P}_{n}(Y)$.

Proof Let $y \in Y$. Then, by (3) we have $\alpha \mathfrak{C}_{y}=\mathcal{C}_{y}$, for all $\alpha \in \mathcal{O} \mathcal{P}_{n}(Y)$, whence $(\alpha \Theta)\left(\mathfrak{C}_{y} \Theta\right)=\alpha \mathfrak{C}_{y} \Theta=\mathcal{C}_{y} \Theta$, for all $\alpha \in \mathcal{O} \mathcal{P}_{n}(Y)$. Since Θ is surjective, it follows that $\beta\left(\mathcal{C}_{y} \Theta\right)=\mathcal{C}_{y} \Theta$, for all $\beta \in \mathcal{O} \mathcal{P}_{n}(Z)$. In particular, given (any) $x \in Z$, we obtain $\mathcal{C}_{y} \Theta=\mathcal{C}_{x}\left(\mathcal{C}_{y} \Theta\right)=\mathcal{C}_{(x)\left(\mathcal{C}_{y} \Theta\right)}$, using also equality (2). Thus $\mathcal{C}_{y} \Theta=\mathcal{C}_{z}$, with $z=(x)\left(\mathcal{C}_{y} \Theta\right) \in Z$ (which does not depend of the taken $x \in Z$, since Θ is a function).

Therefore, we proved property 1 and so we have a well defined function $\theta: Y \longrightarrow Z$ satisfying the equality $\mathcal{C}_{y} \Theta=\mathcal{C}_{y \theta}$, for all $y \in Y$. A similar reasoning applied to the inverse isomorphism $\Theta^{-1}: \mathcal{O} \mathcal{P}_{n}(Z) \longrightarrow \mathcal{O} \mathcal{P}_{n}(Y)$ allows us to deduce the existence of a function $\theta^{\prime}: Z \longrightarrow Y$ satisfying the equality $\mathcal{C}_{z} \Theta^{-1}=\mathcal{C}_{z \theta^{\prime}}$, for all $z \in Z$. Moreover, we have $\mathcal{C}_{y}=\mathcal{C}_{y} \Theta \Theta^{-1}=\mathcal{C}_{y \theta} \Theta^{-1}=\mathcal{C}_{y \theta \theta^{\prime}}$, for all $y \in Y$, and similarly $\mathcal{C}_{z}=\mathcal{C}_{z \theta^{\prime} \theta}$, for all $z \in Z$, which shows that θ and θ^{\prime} are mutually inverse bijections. Thus, we just proved 2.

Next, we prove property 3 . Let $y \in Y$ and $\alpha \in \mathcal{O} \mathcal{P}_{n}(Y)$. Then

$$
\mathcal{C}_{(y \theta)(\alpha \Theta)}=\mathcal{C}_{y \theta}(\alpha \Theta)=\left(\mathcal{C}_{y} \Theta\right)(\alpha \Theta)=\left(\mathcal{C}_{y} \alpha\right) \Theta=\mathcal{C}_{y \alpha} \Theta=\mathcal{C}_{(y \alpha) \theta}
$$

by using equality (2), the definition of θ and the fact that Θ is a homomorphism, whence $(y \theta)(\alpha \Theta)=(y \alpha) \theta$.
It remains to prove 4 . Let α be an idempotent of $\mathcal{O} \mathcal{P}_{n}(Y)$. Then $\alpha \Theta$ is an idempotent of $\mathcal{O} \mathcal{P}_{n}(Z)$ and so $\operatorname{Im}(\alpha \Theta)=$ $\operatorname{Fix}(\alpha \Theta)$. Let $z \in \operatorname{Im}(\alpha \Theta) \subseteq Z$. Then $z=z(\alpha \Theta)$ and, on the other hand, $z=y \theta$, for some $y \in Y$. Hence, by property $3, z=z(\alpha \Theta)=(y \theta)(\alpha \Theta)=(y \alpha) \theta \in(\operatorname{Im}(\alpha)) \theta$. Conversely, let $z \in(\operatorname{Im}(\alpha)) \theta$. Then $z=y \theta$, for some $y \in \operatorname{Im}(\alpha) \subseteq Y$. As α is an idempotent (hence $\operatorname{Im}(\alpha)=\operatorname{Fix}(\alpha)$), we have $y=y \alpha$ and so, by using property 3 , we obtain $z=y \theta=(y \alpha) \theta=(y \theta)(\alpha \Theta)=z(\alpha \Theta) \in \operatorname{Im}(\alpha \Theta)$. Thus $\operatorname{Im}(\alpha \Theta)=(\operatorname{Im}(\alpha)) \theta$, as required.

Theorem 1.3 Let Y and Z be nonempty subsets of X_{n}. Then $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{P}_{n}(Z)$ are isomorphic if and only if there exists $\sigma \in \mathcal{D}_{2 n}$ such that $Y \sigma=Z$.

Proof If there exists $\sigma \in \mathcal{D}_{2 n}$ such that $Y \sigma=Z$, then it is easy to show that the mapping $\mathcal{O} \mathcal{P}_{n}(Y) \rightarrow \mathcal{O} \mathcal{P}_{n}(Z)$, $\alpha \mapsto \sigma^{-1} \alpha \sigma$, is an isomorphism. Conversely, suppose there exists an isomorphism $\Theta: \mathcal{O} \mathcal{P}_{n}(Y) \longrightarrow \mathcal{O} \mathcal{P}_{n}(Z)$ and let $\theta: Y \longrightarrow Z$ be the bijection induced by Θ given by Lemma 1.2. Let $i, j \in Y$ be such that $i<j$. Take

$$
A(i, j)=\left\{\alpha \in \mathcal{O} \mathcal{P}_{n}(Y) \mid \alpha=\alpha^{2} \text { and } \operatorname{Im}(\alpha)=\{i<j\}\right\}
$$

Then, by Lemma 1.2, we have

$$
A(i, j) \Theta=\left\{\beta \in \mathcal{O} \mathcal{P}_{n}(Z) \mid \beta=\beta^{2} \text { and } \operatorname{Im}(\beta)=\{i \theta, j \theta\}\right\}
$$

Moreover, by enumerating their elements, it is not difficult to conclude that $|A(i, j)|=(j-i)(n-(j-i))$ and $|A(i, j) \Theta|=$ $|j \theta-i \theta|(n-|j \theta-i \theta|)$. As Θ is an isomorphism, we get $|A(i, j) \Theta|=|A(i, j)|$, i.e. $(j-i)(n-(j-i))=|j \theta-i \theta|(n-|j \theta-i \theta|)$, whence $|j \theta-i \theta|=j-i$ or $|j \theta-i \theta|=n-(j-i)$. Therefore, by Proposition 1.1, it follows that θ is a restriction of some permutation σ of $\mathcal{D}_{2 n}$ and so $Z=Y \theta=Y \sigma$, as required.

Now, observing that we can replace $\mathcal{O} \mathcal{P}_{n}$ by $\mathcal{O} \mathcal{R}_{n}$ in the proof of both Lemma 1.2 and Theorem 1.3 (also observe that all the idempotents of $\mathcal{O} \mathcal{R}_{n}$ belong to $\mathcal{O} \mathcal{P}_{n}$), we obtain an analogous characterization:

Theorem 1.4 Let Y and Z be nonempty subsets of X_{n}. Then $\mathcal{O} \mathcal{R}_{n}(Y)$ and $\mathcal{O R}_{n}(Z)$ are isomorphic if and only if there exists $\sigma \in \mathcal{D}_{2 n}$ such that $Y \sigma=Z$.

We finish this section by determining the cardinality of $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$, for each nonempty subset Y of X_{n}.
Recall that Catarino and Higgins showed in [4] that $\left|\mathcal{O} \mathcal{P}_{n}\right|=n\binom{2 n-1}{n-1}-n(n-1)$ and $\left|\mathcal{O} \mathcal{R}_{n}\right|=n\binom{2 n}{n}-\frac{n^{2}}{2}\left(n^{2}-2 n+5\right)+n$. One of the methods used by Catarino and Higgins to find this formula for $\left|\mathcal{O} \mathcal{P}_{n}\right|$ consisted of counting the number of transformations of rank k, for $1 \leq k \leq n$. In fact, they showed that, for $2 \leq k \leq n$, the number of transformations with a fixed image of size k is $k\binom{n}{k}$. In addition, $\mathcal{O} \mathcal{P}_{n}$ has n constant transformations.

Now, let Y be a subset of X_{n}, with $1 \leq|Y|=r \leq n$. Since the number of distinct images contained in Y of size k is $\binom{r}{k}$, we get

$$
\left|\left\{\alpha \in \mathcal{O} \mathcal{P}_{n}(Y)| | \operatorname{Im}(\alpha) \mid=k\right\}\right|=k\binom{n}{k}\binom{r}{k}
$$

for $2 \leq k \leq r$. As $\mathcal{O} \mathcal{P}_{n}(Y)$ also contains r constant transformations, it follows that

$$
\left|\mathcal{O \mathcal { P }}{ }_{n}(Y)\right|=r+\sum_{k=2}^{r} k\binom{r}{k}\binom{n}{k}=\sum_{k=1}^{r} k\binom{r}{k}\binom{n}{k}-r(n-1)
$$

Noticing that $\sum_{k=1}^{r} k\binom{r}{k}\binom{n}{k}=r\binom{n+r-1}{r}$ (Combinatorial Identity (3.30) of [13, page 25]), we obtain:
Theorem 1.5 Let Y be a subset of X_{n} of size r, for $1 \leq r \leq n$. Then $\left|\mathcal{O} \mathcal{P}_{n}(Y)\right|=r\binom{n+r-1}{r}-r(n-1)$.
Regarding $\mathcal{O} \mathcal{R}_{n}$, Catarino and Higgins [4] proved that, for $3 \leq k \leq n$, the number of transformations with a fixed image of size k is $2 k\binom{n}{k}$. Moreover, they also observed that $\left\{\alpha \in \mathcal{O} \mathcal{R}_{n}| | \operatorname{Im}(\alpha) \mid \leq 2\right\}=\left\{\alpha \in \mathcal{O} \mathcal{P}_{n}| | \operatorname{Im}(\alpha) \mid \leq 2\right\}$. Therefore

$$
\left|\mathcal{O R}_{n}(Y)\right|=r+2\binom{r}{2}\binom{n}{2}+\sum_{k=3}^{r} 2 k\binom{r}{k}\binom{n}{k}=2 \sum_{k=1}^{r} k\binom{r}{k}\binom{n}{k}-2\binom{r}{2}\binom{n}{2}-2 r n+r
$$

and so, by using again the above combinatorial identity, we obtain:
Theorem 1.6 Let Y be a subset of X_{n} of size r, for $1 \leq r \leq n$. Then $\left|\mathcal{O} \mathcal{R}_{n}(Y)\right|=2 r\binom{n+r-1}{r}-\frac{r n}{2}(r n-r-n+5)+r$.
Notice that the sizes of $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$ just depend of the size of Y.

2 Regularity and Green's relations

Recall that Catarino and Higgins showed in [4] that both $\mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$ are regular semigroups. Thus, Green's relations \mathcal{L} and \mathcal{R} in $\mathcal{O} \mathcal{P}_{n}$ and in $\mathcal{O} \mathcal{R}_{n}$ are just restrictions of the correspondent relations in \mathcal{T}_{n}. This is also the case for Green's relation \mathcal{D}, as proved by Catarino and Higgins in [4]. Therefore, if $\alpha, \beta \in \mathcal{O} \mathcal{P}_{n}$ [respectively, $\alpha, \beta \in \mathcal{O} \mathcal{R}_{n}$], we have

1. $\alpha \mathcal{L} \beta$ if and only if $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$,
2. $\alpha \mathcal{R} \beta$ if and only if $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)$ and
3. $\alpha \mathcal{D} \beta$ if and only if $|\operatorname{Im}(\alpha)|=|\operatorname{Im}(\beta)|$,
in $\mathcal{O} \mathcal{P}_{n}$ [respectively, $\left.\mathcal{O} \mathcal{R}_{n}\right]$. Regarding Green's relation \mathcal{H}, if α is an element of $\mathcal{O} \mathcal{P}_{n}$ of rank k, for $1 \leq k \leq n$, then the \mathcal{H}-class in $\mathcal{O} \mathcal{P}_{n}$ of α has k elements (all with the same domain and image); in particular, the \mathcal{H}-class in $\mathcal{O} \mathcal{P}_{n}$ of an idempotent of rank k, for $1 \leq k \leq n$, is a cycle group of order k; if α is an element of $\mathcal{O} \mathcal{R}_{n}$ of rank k, for $3 \leq k \leq n$, then the \mathcal{H}-class in $\mathcal{O} \mathcal{R}_{n}$ of α has $2 k$ elements (all with the same domain and image); in particular, the \mathcal{H}-class in $\mathcal{O} \mathcal{R}_{n}$ of an idempotent of rank k, for $3 \leq k \leq n$, is a dihedral group of order $2 k$; if α is an element of $\mathcal{O} \mathcal{R}_{n}$ of rank 1 or 2 , then the \mathcal{H}-class in $\mathcal{O} \mathcal{R}_{n}$ of α has 1 or 2 elements (all with the same domain and image), respectively; in particular, the \mathcal{H}-class in $\mathcal{O} \mathcal{R}_{n}$ of an idempotent of rank 1 or 2 is a cycle group of order 1 or 2 , respectively. These facts were proved in [4]. See also [16].

Let Y be a nonempty subset of X_{n} of size $r(1 \leq r \leq n)$. In this section we discuss regularity and give descriptions for Green's relations of $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$.

Let

$$
F \mathcal{O} \mathcal{P}_{n}(Y)=\left\{\alpha \in \mathcal{O} \mathcal{P}_{n}(Y) \mid \operatorname{Im}(\alpha)=Y \alpha\right\}
$$

and

$$
F \mathcal{O} \mathcal{R}_{n}(Y)=\left\{\alpha \in \mathcal{O} \mathcal{R}_{n}(Y) \mid \operatorname{Im}(\alpha)=Y \alpha\right\}
$$

Clearly $F \mathcal{O} \mathcal{P}_{n}(Y)$ and $F \mathcal{O} \mathcal{R}_{n}(Y)$ are right ideals of $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$, respectively. In fact, we will show that these subsets determine relevant aspects of the structure of $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$. Regarding the regularity, we have:

Theorem 2.1 Let Y be a nonempty subset of X_{n}. Then $F \mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $F \mathcal{O} \mathcal{R}_{n}(Y)$] is the set of all regular elements of $\mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\left.\mathcal{O} \mathcal{R}_{n}(Y)\right]$. Furthermore:

1. $F \mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $F \mathcal{O} \mathcal{R}_{n}(Y)$] is the largest regular subsemigroup of $\mathcal{O P}_{n}(Y)$ [respectively, $\left.\mathcal{O} \mathcal{R}_{n}(Y)\right]$;
2. $\mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\mathcal{O R}_{n}(Y)$] is regular if and only if $|Y|=1$ or $Y=X_{n}$.

Proof If α is a regular element of $\mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\left.\mathcal{O} \mathcal{R}_{n}(Y)\right]$, then $\alpha=\alpha \beta \alpha$, for some $\beta \in \mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\left.\beta \in \mathcal{O} \mathcal{R}_{n}(Y)\right]$, whence $X \alpha=(X \alpha \beta) \alpha \subseteq Y \alpha$ and so $X \alpha=Y \alpha$, i.e. $\alpha \in F \mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\left.\alpha \in F \mathcal{O} \mathcal{R}_{n}(Y)\right]$.

Conversely, take $\alpha \in F \mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\left.\alpha \in F \mathcal{O} \mathcal{R}_{n}(Y)\right]$ and suppose that $\operatorname{Im}(\alpha)=\left\{a_{1}<\cdots<a_{k}\right\}$, for some $a_{1}, \ldots, a_{k} \in Y$, with $1 \leq k \leq|Y|$. Then there exist $b_{1}, \ldots, b_{k} \in Y$ such that $b_{i} \alpha=a_{i}$, for $1 \leq i \leq k$. Let β be the transformation of X_{n} defined by

$$
x \beta= \begin{cases}b_{k} & \text { if } 1 \leq x<a_{1} \text { or } a_{k} \leq x \leq n \\ b_{j} & \text { if } a_{j} \leq x<a_{j+1} \text { and } 1 \leq j \leq k-1\end{cases}
$$

It is easy to check that $\beta \in \mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\left.\beta \in \mathcal{O} \mathcal{R}_{n}(Y)\right]$ and $\alpha=\alpha \beta \alpha$. Thus α is a regular element of $\mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\mathcal{O R}_{n}(Y)$].

Hence, we proved that $F \mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\left.F \mathcal{O} \mathcal{R}_{n}(Y)\right]$ is the set of all regular elements of $\mathcal{O} \mathcal{P}_{n}(Y)$ [respectively, $\left.\mathcal{O} \mathcal{R}_{n}(Y)\right]$ 。

Statement 1 is obvious, since $F \mathcal{O} \mathcal{P}_{n}(Y)$ and $F \mathcal{O} \mathcal{R}_{n}(Y)$ are subsemigroups of $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$, respectively.
Regarding statement 2, if Y is a proper subset of X_{n} such that $|Y| \geq 2$ then we may consider two distinct elements $y, y^{\prime} \in Y$ and an element $z \in X_{n} \backslash Y$. Thus, we define a transformation α on X_{n} by $x \alpha=y$, if $x=z$, and $x \alpha=y^{\prime}$, if $x \in X_{n} \backslash\{z\}$. Clearly, $\alpha \in \mathcal{O} \mathcal{P}_{n}(Y)$ and, since $\operatorname{Im}(\alpha)=\left\{y, y^{\prime}\right\}$ and $Y \alpha=\left\{y^{\prime}\right\}, \alpha$ is not regular both in $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$. For the converse, we already recalled that $\mathcal{O} \mathcal{P}_{n}=\mathcal{O} \mathcal{P}_{n}\left(X_{n}\right)$ and $\mathcal{O} \mathcal{R}_{n}=\mathcal{O} \mathcal{R}_{n}\left(X_{n}\right)$ are regular semigroups and, on the other hand, if $|Y|=1$ then $\mathcal{O} \mathcal{P}_{n}(Y)=\mathcal{O} \mathcal{R}_{n}(Y)$ is trivial (it is just formed by the constant mapping with range Y), whence a regular semigroup, as required.

We finish this section with the following characterization of Green's relations in $\mathcal{O} \mathcal{P}_{n}(Y)$ and in $\mathcal{O} \mathcal{R}_{n}(Y)$:

Theorem 2.2 Let Y be a nonempty subset of X_{n} of size r. Let $S=\mathcal{O P}_{n}(Y)$ or $S=\mathcal{O} \mathcal{R}_{n}(Y)$. Let $\alpha, \beta \in S$. Then:

1. $\alpha \mathcal{L} \beta$ in S if and only if either $\alpha=\beta$ or both α and β are regular and $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$;
2. $\alpha \mathcal{R} \beta$ in S if and only if $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)$;
3. $\alpha \mathcal{D} \beta$ in S if and only if either (i) both α and β are regular and $|\operatorname{Im}(\alpha)|=|\operatorname{Im}(\beta)|$ or (ii) both α and β are not regular and $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)$;
4. If α is a non regular element of $\mathcal{O} \mathcal{P}_{n}(Y)$ then the \mathcal{H}-class in $\mathcal{O} \mathcal{P}_{n}(Y)$ of α is trivial; if α is a regular element of $\mathcal{O} \mathcal{P}_{n}(Y)$ of rank k, for $1 \leq k \leq r$, then the \mathcal{H}-class in $\mathcal{O} \mathcal{P}_{n}(Y)$ of α has k elements (all with the same domain and image); in particular, the \mathcal{H}-class in $\mathcal{O} \mathcal{P}_{n}(Y)$ of an idempotent of rank k, for $1 \leq k \leq r$, is a cycle group of order k;
5. If α is a non regular element of $\mathcal{O} \mathcal{R}_{n}(Y)$ then the \mathcal{H}-class in $\mathcal{O} \mathcal{R}_{n}(Y)$ of α is trivial; if α is a regular element of $\mathcal{O R}_{n}(Y)$ of rank k, for $3 \leq k \leq r$, then the \mathcal{H}-class in $\mathcal{O} \mathcal{R}_{n}(Y)$ of α has $2 k$ elements (all with the same domain and image); in particular, the \mathcal{H}-class in $\mathcal{O} \mathcal{R}_{n}(Y)$ of an idempotent of rank k, for $3 \leq k \leq r$, is a dihedral group of order $2 k$; if α is a regular element of $\mathcal{O} \mathcal{R}_{n}(Y)$ of rank 1 or 2 , then the \mathcal{H}-class in $\mathcal{O} \mathcal{R}_{n}(Y)$ of α has 1 or 2 elements (all with the same domain and image), respectively; in particular, the \mathcal{H}-class in $\mathcal{O R}_{n}(Y)$ of an idempotent of rank 1 or 2 is a cycle group of order 1 or 2 , respectively.

Proof 1. First, suppose that $\alpha \mathcal{L} \beta$ in S. Then $\alpha=\gamma \beta$ and $\beta=\lambda \alpha$, for some $\gamma, \lambda \in S^{1}$. If $\alpha \neq \beta$ then $\gamma \neq 1$ and $\lambda \neq 1$, whence $X \alpha=X \gamma \beta \subseteq Y \beta \subseteq X \beta=X \lambda \alpha \subseteq Y \alpha \subseteq X \alpha$ and so $\operatorname{Im}(\alpha)=Y \alpha=Y \beta=\operatorname{Im}(\beta)$, i.e. α and β are regular and $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$.

The converse is obvious, since $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$ implies $\alpha \mathcal{L} \beta$ in \mathcal{T}_{n} and so, being either $\alpha=\beta$ or α and β are regular elements in S, it follows that $\alpha \mathcal{L} \beta$ in S (in fact, no matter who is the subsemigroup S of \mathcal{T}_{n}).
2. If $\alpha \mathcal{R} \beta$ in S then $\alpha \mathcal{R} \beta$ in \mathcal{T}_{n} and so $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)$.

In order to prove the converse, it is useful to introduce the following notation. Let $I=\left\{i_{1}<\cdots<i_{k}\right\}$ be a nonempty subset of $X_{n}(1 \leq k \leq n)$. Define the transformation ι_{I} of \mathcal{T}_{n} by

$$
x \iota_{I}= \begin{cases}i_{k} & \text { if } 1 \leq x<i_{1} \quad \text { or } \quad i_{k} \leq x \leq n \\ i_{j} & \text { if } i_{j} \leq x<i_{j+1} \quad \text { and } 1 \leq j \leq k-1\end{cases}
$$

Clearly, ι_{I} is an idempotent of $\mathcal{O} \mathcal{P}_{n}$ with image (fixed points) I. In particular, if $I \subseteq Y$ then $\iota_{I} \in \mathcal{O} \mathcal{P}_{n}(Y)$.
Now, take $T=\mathcal{O} \mathcal{P}_{n}$ for $S=\mathcal{O} \mathcal{P}_{n}(Y)$ and $T=\mathcal{O} \mathcal{R}_{n}$ for $S=\mathcal{O R}_{n}(Y)$. Suppose that $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)$. Then $\alpha \mathcal{R} \beta$ in T and so $\alpha=\beta \gamma$ and $\beta=\alpha \lambda$, for some $\gamma, \lambda \in T$. Thus, it is clear that we also have $\alpha=\beta \iota_{\operatorname{Im}(\beta)} \gamma$ and $\beta=\alpha \iota_{\operatorname{Im}(\alpha)} \lambda$. Moreover, since $\iota_{\operatorname{Im}(\beta)} \gamma$ and $\iota_{\operatorname{Im}(\alpha)} \lambda$ have the same rank of α (and β), it follows that $\operatorname{Im}\left(\iota_{\operatorname{Im}(\beta)} \gamma\right)=\operatorname{Im}(\alpha)$ and $\operatorname{Im}\left(\iota_{\operatorname{Im}(\alpha)} \lambda\right)=\operatorname{Im}(\beta)$, whence $\iota_{\operatorname{Im}(\beta)} \gamma, \iota_{\operatorname{Im}(\alpha)} \lambda \in S$ and so $\alpha \mathcal{R} \beta$ in S.
3. If $\alpha \mathcal{D} \beta$ in S then there exists $\gamma \in S$ such that $\alpha \mathcal{L} \gamma$ and $\gamma \mathcal{R} \beta$ in S. On the other hand, we also have $\alpha \mathcal{D} \beta$ in \mathcal{T}_{n} and so $|\operatorname{Im}(\alpha)|=|\operatorname{Im}(\beta)|$. Moreover, as in any semigroup, either both α and β are regular or both α and β are non regular. Hence, in case both α and β are non regular, it follows that γ is also non regular and thus $\alpha=\gamma$ and $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\gamma)=\operatorname{Ker}(\beta)$.

Conversely, if (both α and β are not regular and) $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)$ then $\alpha \mathcal{R} \beta$ in S and so $\alpha \mathcal{D} \beta$ in S. On the other hand, suppose that both α and β are regular and $|\operatorname{Im}(\alpha)|=|\operatorname{Im}(\beta)|$. Then $\alpha \mathcal{D} \beta$ in T (with T as defined above) and so $\alpha=\gamma_{1} \beta \gamma_{2}$ and $\beta=\lambda_{1} \alpha \lambda_{2}$, for some $\gamma_{1}, \gamma_{2}, \lambda_{1}, \lambda_{2} \in T$. Let $\beta^{\prime} \in S$ be an inverse of β. Then $\alpha=\left(\gamma_{1} \beta \beta^{\prime}\right) \beta\left(\beta^{\prime} \beta \gamma_{2}\right)$. Clearly, $\gamma_{1} \beta \beta^{\prime} \in S$. On the other hand, since $\beta^{\prime} \beta \gamma_{2}$ has the same rank as α, it should have the same image as α, whence also $\beta^{\prime} \beta \gamma_{2} \in S$. Similarly, if $\alpha^{\prime} \in S$ is an inverse of α then $\beta=\left(\lambda_{1} \alpha \alpha^{\prime}\right) \alpha\left(\alpha^{\prime} \alpha \lambda_{2}\right)$ and $\lambda_{1} \alpha \alpha^{\prime}, \alpha^{\prime} \alpha \lambda_{2} \in S$. Thus, also in this case, $\alpha \mathcal{D} \beta$ in S.

Properties 4 and 5 are immediate, since \mathcal{L}-classes in S of non regular elements are trivial and it is clear that \mathcal{H}-classes in T (with T as defined above) of regular elements of S must coincide with the respective \mathcal{H}-classes in S.

3 Ranks

Let Y be a nonempty subset of X_{n}. In this section we determine the ranks of the semigroups $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$. Surprisingly, as opposed to the case of $\mathcal{O}_{n}(Y)$ [8], we will show that the ranks of $\mathcal{O} \mathcal{P}_{n}(Y)$ and $\mathcal{O} \mathcal{R}_{n}(Y)$ only depend of the size of Y.

It is well known that $\mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$ have, respectively, ranks 2 and 3 (see [2, 4]). Therefore, in what follows, we suppose that Y is a proper subset of X_{n}. Let $r=|Y|$.

We begin by showing that $\mathcal{O} \mathcal{P}_{n}(Y)$ is generated by its elements of rank r.

Lemma 3.1 Any transformation of $\mathcal{O} \mathcal{P}_{n}(Y)$ of rank k is a product of two elements of $\mathcal{O} \mathcal{P}_{n}(Y)$ of rank $k+1$, for $1 \leq k<r$.
Proof Let α be an element of $\mathcal{O} \mathcal{P}_{n}(Y)$ of rank k. By [4, Theorem 2.6], there exist $\beta \in \mathcal{O}_{n}$ and $0 \leq t<n$ such that $\alpha=g^{t} \beta$, where g is the permutation of X_{n} defined in Section 1 . Since g^{t} is a permutation, then $\operatorname{Im}(\beta)=\operatorname{Im}(\alpha)$ and so, in addition, $\beta \in \mathcal{O}_{n}(Y)$. Now, by [8, Lemma 3.5], there exist transformations $\beta_{1}, \beta_{2} \in \mathcal{O}_{n}(Y)$ of rank $k+1$ such that $\beta=\beta_{1} \beta_{2}$. Let $\alpha_{1}=g^{t} \beta_{1}$. Then $\beta_{1} \in \mathcal{O} \mathcal{P}_{n}$. Again, since g^{t} is a permutation, we have $\operatorname{Im}\left(\alpha_{1}\right)=\operatorname{Im}\left(\beta_{1}\right)$, whence α_{1} is an element of $\mathcal{O} \mathcal{P}_{n}(Y)$ with rank $k+1$. Thus, $\alpha=\alpha_{1} \beta_{2}$, with both α_{1} and β_{2} elements of $\mathcal{O} \mathcal{P}_{n}(Y)$ of rank $k+1$, as required.

From this lemma, it follows immediately that $\mathcal{O} \mathcal{P}_{n}(Y)$ is generated by its elements of rank r.
Now, suppose that $Y=\left\{y_{1}<y_{2}<\cdots<y_{r}\right\}$. Let

$$
\widehat{g}_{Y}=\left(\begin{array}{c|c|c|c|c}
A_{1} & A_{2} & \cdots & A_{r-1} & A_{r} \\
y_{2} & y_{3} & \cdots & y_{r} & y_{1}
\end{array}\right) \in \mathcal{O P}_{n}(Y)
$$

where $A_{j}=\left\{y_{j}, \ldots, y_{j+1}-1\right\}, 1 \leq j \leq r-1$, and $A_{r}=\left\{y_{r}, \ldots, n, 1, \ldots, y_{1}-1\right\}$.
Lemma 3.2 Let $\alpha, \beta \in \mathcal{O P}_{n}(Y)$ be two elements of rankr such that $\operatorname{Ker}(\beta)=\operatorname{Ker}(\alpha)$. Then $\beta=\alpha \widehat{g}_{Y}^{k}$, for some $k \in\{0, \ldots, r-1\}$.

Proof Suppose that $I_{1}, I_{2}, \ldots, I_{k}$ are the kernel classes of $\alpha\left(\right.$ and β) in order $\max I_{i}<\max I_{i+1}$, for $i=1, \ldots, r-1$. Then

$$
\alpha=\left(\begin{array}{c|c|c|c|c|c|c|c}
I_{1} & I_{2} & \cdots & I_{r-i} & I_{r-i+1} & I_{r-i+2} & \cdots & I_{r} \\
y_{i+1} & y_{i+2} & \cdots & y_{r} & y_{1} & y_{2} & \cdots & y_{i}
\end{array}\right)
$$

and

$$
\beta=\left(\begin{array}{c|c|c|c|c|c|c|c}
I_{1} & I_{2} & \cdots & I_{r-j} & I_{r-j+1} & I_{r-j+2} & \cdots & I_{r} \\
y_{j+1} & y_{j+2} & \cdots & y_{r} & y_{1} & y_{2} & \cdots & y_{j}
\end{array}\right)
$$

for some $1 \leq i, j \leq r$. Take $k=j-i$, if $i \leq j$, and $k=r-i+j$, otherwise. Hence, it is a routine matter to prove that $\beta=\alpha \widehat{g}_{Y}^{k}$, as required.

Now, notice that any generating set of $\mathcal{O} \mathcal{P}_{n}(Y)$ (and of $\left.\mathcal{O} \mathcal{R}_{n}(Y)\right)$ must contain at least one element from each distinct kernel of transformations of rank r. On the other hand, the number of distinct kernels of transformations of $\mathcal{O} \mathcal{P}_{n}(Y)$ (and of $\mathcal{O} \mathcal{R}_{n}(Y)$) of rank r coincides with the number of distinct kernels of transformations of $\mathcal{O} \mathcal{P}_{n}$ of rank r, which is precisely $\binom{n}{r}$ (see [4]). These observations, together with the previous two lemmas, prove the following result.

Theorem 3.3 The semigroup $\mathcal{O} \mathcal{P}_{n}(Y)$ is generated by any subset of transformations of rankr containing \widehat{g}_{Y} and at least one element from each distinct kernel. Furthermore, $\mathcal{O P}_{n}(Y)$ has rank equal to $\binom{n}{r}$.

Next, let

$$
\widetilde{h}_{Y}=\left(\begin{array}{c|c|c|c|c}
B_{1} & B_{2} & \cdots & B_{r-1} & B_{r} \\
y_{r} & y_{r-1} & \cdots & y_{2} & y_{1}
\end{array}\right) \in \mathcal{O R}_{n}(Y)
$$

where $B_{1}=\left\{1, \ldots, y_{1}, y_{r}+1, \ldots, n\right\}$ and $B_{j}=\left\{y_{j-1}+1, \ldots, y_{j}\right\}, 2 \leq j \leq r$.
Notice that

$$
\operatorname{Ker}\left(\widetilde{h}_{Y}\right)=\operatorname{Ker}\left(\widehat{g}_{Y}\right) \quad \Longleftrightarrow \quad B_{j}=A_{j}, 1 \leq j \leq r \quad \Longleftrightarrow \quad B_{j}=A_{j}=\left\{y_{j}\right\}, 1 \leq j \leq r \quad \Longleftrightarrow \quad r=n
$$

whence \widetilde{h}_{Y} and \widehat{g}_{Y} have distinct kernels. On the other hand, clearly

$$
\widetilde{h}_{Y}^{2}=\left(\begin{array}{c|c|c|c|c}
B_{1} & B_{2} & \cdots & B_{r-1} & B_{r} \\
y_{1} & y_{2} & \cdots & y_{r-1} & y_{r}
\end{array}\right) \in \mathcal{O P}_{n}(Y)
$$

is a right identity of $\mathcal{O} \mathcal{R}_{n}(Y)$. Thus, if $\alpha \in \mathcal{O} \mathcal{R}_{n}(Y) \backslash \mathcal{O} \mathcal{P}_{n}(Y)$ then $\alpha=\left(\alpha \widetilde{h}_{Y}\right) \widetilde{h}_{Y}$, with $\operatorname{Ker}(\alpha)=\operatorname{Ker}\left(\alpha \widetilde{h}_{Y}\right)$ and $\alpha \widetilde{h}_{Y} \in \mathcal{O} \mathcal{P}_{n}(Y)$. Therefore, it is easy to conclude:

Theorem 3.4 The semigroup $\mathcal{O} \mathcal{R}_{n}(Y)$ is generated by any subset of transformations of rank r containing both \widehat{g}_{Y} and \widetilde{h}_{Y} and at least one element from each distinct kernel. Furthermore, $\mathcal{O} \mathcal{R}_{n}(Y)$ has rank equal to $\binom{n}{r}$.

Acknowledgment

We wish to thank the anonymous referee for her/his valuable suggestions.

References

[1] J. Araújo, V.H. Fernandes, M.M. Jesus, V.Maltcev and J.D. Mitchell, Automorphisms of partial endomorphism semigroups, Publicationes Mathematicae Debrecen, 79.1-2 (2011), 23-39.
[2] R.E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math. 24 (2000), 1-7.
[3] P.M. Catarino, Monoids of orientation-preserving transformations of a finite chain and their presentations, Proc. of the Conference in St Andrews, Scotland, 1997 (1998), 39-46.
[4] P.M. Catarino and P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), 190-206.
[5] I. Dimitrova, V.H. Fernandes and J. Koppitz, The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain, Publicationes Mathematicae Debrecen, 81.1-2 (2012), 11-29.
[6] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of transformation preserving the orientation on a finite chain, J. Algebra 321 (2009), 743-757.
[7] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, The cardinal and the idempotent number of various monoids of transformations on a finite chain, Bulletin of the Malaysian Mathematical Sciences Society (2) 34 (2011), 79-85.
[8] V.H. Fernandes, P. Honyam, T.M. Quinteiro and B. Singha, On semigroups of endomorphisms of a chain with restricted range, Semigroup Forum (DOI: 10.1007/s00233-013-9548-x) (to appear).
[9] V.H. Fernandes and T.M. Quinteiro, Bilateral semidirect product decompositions of transformation monoids, Semigroup Forum 82 (2011), 271-287.
[10] V.H. Fernandes and T.M. Quinteiro, The cardinal of various monoids of transformations that preserve a uniform partition, Bulletin of the Malaysian Mathematical Sciences Society (4) 35 (2012), 885-896.
[11] V.H. Fernandes and T.M. Quinteiro, On the ranks of certain monoids of transformations that preserve a uniform partition, Communications in Algebra 42 (2014), 615-636.
[12] V.H. Fernandes and J. Sanwong, On the rank of semigroups of transformations on a finite set with restricted range, Algebra Colloq. 21 (2014), 497-510.
[13] H.W. Gould, Combinatorial identities, Morgantown, W. Va., 1972.
[14] J.M. Howie, Fundamentals of Semigroup Theory, Oxford, Oxford University Press, 1995.
[15] S. Mendes-Gonçalves and R.P. Sullivan, The ideal structure of semigroups of transformations with restricted range, Bull. Austral. Math. Soc. 83 (2011) 289-300.
[16] D.B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998) 515-547.
[17] W. Mora and Y. Kemprasit, Regular elements of some order-preserving transformation semigroups, Int. J. Algebra 4 (2010), no. 13-16, 631-641.
[18] S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. Appl. 16 (2005), no. 3, 307-314.
[19] J. Sanwong and W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 2008, Art. ID 794013, 11 pp.
[20] J. Sanwong, B. Singha and R.P. Sullivan, Maximal and minimal congruences on some semigroups, Acta Math. Sin. (Engl. Ser.) 25(3) (2009) 455-466.
[21] R.P. Sullivan, Semigroups of linear transformations with restricted range, Bull. Austral. Math. Soc. 77 (2008) 441-453.
[22] J.S.V. Symons, Some results concerning a transformation semigroup, J. Austral. Math. Soc. 19 (Series A) (1975) 413-425.
[23] P. Zhao and V.H. Fernandes, The ranks of ideals in various transformation monoids, Communications in Algebra (to appear).

Vítor H. Fernandes, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal; also: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal; e-mail: vhf@fct.unl.pt

Preeyanuch Honyam, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; e-mail: preeyanuch_h@hotmail.com
Teresa M. Quinteiro, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1950-062 Lisboa, Portugal; also: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal; e-mail: tmelo@adm.isel.pt

Boorapa Singha, Department of Mathematics and Statistics, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand; e-mail: boorapas@yahoo.com

[^0]: *This work was developed within the FCT Project PEst-OE/MAT/UI0143/2014 of CAUL, FCUL, and of Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.
 ${ }^{\dagger}$ This work was developed within the FCT Project PEst-OE/MAT/UI0143/2014 of CAUL, FCUL, and of Instituto Superior de Engenharia de Lisboa.

