On semigroups of orientation-preserving transformations with restricted range

Vítor H. Fernandes^{*}, Preeyanuch Honyam, Teresa M. Quinteiro[†] and Boorapa Singha

October 1, 2014

Abstract

Let X_n be a chain with n elements $(n \in \mathbb{N})$ and let \mathcal{OP}_n be the monoid of all orientation-preserving transformations of X_n . In this paper, for any nonempty subset Y of X_n , we consider the subsemigroup $\mathcal{OP}_n(Y)$ of \mathcal{OP}_n of all transformations with range contained in Y: we describe the largest regular subsemigroup of $\mathcal{OP}_n(Y)$, which actually coincides with its subset of all regular elements. Also, we determine when two semigroups of the type $\mathcal{OP}_n(Y)$ are isomorphic and calculate their ranks. Moreover, a parallel study is presented for the correspondent subsemigroups of the monoid \mathcal{OR}_n of all either orientation-preserving or orientation-reversing transformations of X_n .

2000 Mathematics subject classification: 20M20, 20M10.

Keywords: transformations, orientation-preserving, orientation-reversing, restricted range, rank.

Introduction and preliminaries

Let X be a nonempty set and denote by $\mathcal{T}(X)$ the monoid (under composition) of all full transformations on X. Let $n \in \mathbb{N}$. Let X_n be a chain with n elements, say $X_n = \{1 < 2 < \cdots < n\}$, and denote the monoid $\mathcal{T}(X_n)$ simply by \mathcal{T}_n . Let $a = (a_1, a_2, \ldots, a_t)$ be a sequence of t ($t \ge 0$) elements from the chain X_n . We say that a is cyclic [respectively, anti-cyclic] if there exists no more than one index $i \in \{1, \ldots, t\}$ such that $a_i > a_{i+1}$ [respectively, $a_i < a_{i+1}$], where a_{t+1} denotes a_1 . Let $\alpha \in \mathcal{T}_n$. We say that α is an orientation-preserving [respectively, orientation-reversing] transformation if the sequence of its images $(1\alpha, \ldots, n\alpha)$ is cyclic [respectively, anti-cyclic]. It is easy to check that the product of an orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing. Denote by \mathcal{OP}_n the submonoid of \mathcal{T}_n whose elements are orientation-preserving and by \mathcal{OR}_n the submonoid of \mathcal{T}_n whose elements are either orientation-preserving or orientation-reversing.

The notion of an orientation-preserving transformation was introduced by McAlister in [16] and, independently, by Catarino and Higgins in [4]. Several properties of the monoids \mathcal{OP}_n and \mathcal{OR}_n have been investigated in these two papers. A presentation for the monoid \mathcal{OP}_n , in terms of 2n - 1 generators, was given by Catarino in [3]. Another presentation for \mathcal{OP}_n , in terms of 2 (its rank) generators, was found by Arthur and Ruškuc [2], who also exhibited a presentation for the monoid \mathcal{OR}_n , in terms of 3 (its rank) generators. The congruences of the monoids \mathcal{OP}_n and \mathcal{OR}_n were completely described by Fernandes et al. in [6]. Semigroups of orientation-preserving transformations were also studied in several recent papers (e.g. see [1, 5, 7, 9, 10, 11, 23]).

Let Y be a nonempty subset of X and denote by $\mathcal{T}(X, Y)$ the subsemigroup $\{\alpha \in \mathcal{T}(X) \mid \text{Im}(\alpha) \subseteq Y\}$ of $\mathcal{T}(X)$ of all elements with range (image) restricted to Y.

In 1975, Symons [22] introduced and studied the semigroup $\mathcal{T}(X, Y)$. He described all the automorphisms of $\mathcal{T}(X, Y)$ and also determined when two semigroups of this type are isomorphic. In [18], Nenthein et al. characterized the regular elements of $\mathcal{T}(X, Y)$ and, in [19], Sanwong and Sommanee obtained the largest regular subsemigroup of $\mathcal{T}(X, Y)$ and showed that this subsemigroup determines Green's relations on $\mathcal{T}(X, Y)$. Moreover, they also determined a class of maximal inverse subsemigroups of this semigroup. Later, in 2009, all maximal and minimal congruences on $\mathcal{T}(X, Y)$ were described by Sanwong et al. [20]. Recently, all the ideals of $\mathcal{T}(X, Y)$ were obtained by Mendes-Gonçalves and Sullivan in

^{*}This work was developed within the FCT Project PEst-OE/MAT/UI0143/2014 of CAUL, FCUL, and of Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.

[†]This work was developed within the FCT Project PEst-OE/MAT/UI0143/2014 of CAUL, FCUL, and of Instituto Superior de Engenharia de Lisboa.

[15] and, for a finite set X, Fernandes and Sanwong computed the rank of $\mathcal{T}(X,Y)$ [12]. On the other hand, in [21], Sullivan considered the linear counterpart of $\mathcal{T}(X,Y)$, that is the semigroup which consists of all linear transformations from a vector space V into a fixed subspace W of V, and described its Green's relations and ideals. If X is a chain then, being $\mathcal{O}(X)$ the monoid of all endomorphisms (i.e. order-preserving mappings) of the chain X, an order-preserving counterpart of the semigroup $\mathcal{T}(X,Y)$ can also be considered, namely the semigroup $\mathcal{O}(X,Y) = \{\alpha \in \mathcal{O}(X) \mid \operatorname{Im}(\alpha) \subseteq Y\}$. If $X = X_n$ then $\mathcal{O}(X,Y)$ is simply denoted by $\mathcal{O}_n(Y)$. A description of the regular elements of $\mathcal{O}(X,Y)$ and a characterization of the regular semigroups of this type were given by Mora and Kemprasit in [17]. This semigroup was also studied by the authors in [8] who described its largest regular subsemigroup and Green's relations. Moreover, for finite chains, also in [8] Fernandes et al. determined when two semigroups of the type $\mathcal{O}_n(Y)$ are isomorphic and calculated their ranks.

In this paper, we consider the semigroups of transformations with restricted range

$$\mathcal{OP}_n(Y) = \{ \alpha \in \mathcal{OP}_n \mid \operatorname{Im}(\alpha) \subseteq Y \}$$
 and $\mathcal{OR}_n(Y) = \{ \alpha \in \mathcal{OR}_n \mid \operatorname{Im}(\alpha) \subseteq Y \},\$

for each nonempty subset Y of X_n . We begin, in Section 1, by characterizing when two semigroups of the type $\mathcal{OP}_n(Y)$ and of the type $\mathcal{OR}_n(Y)$ are isomorphic. Section 2 is dedicated to the study of regularity and Green's relations on $\mathcal{OP}_n(Y)$ and $\mathcal{OR}_n(Y)$. Finally, in Section 3, we determine the ranks of these semigroups.

For general background on Semigroup Theory and standard notation, we refer the reader to Howie's book [14].

Isomorphism theorems and sizes 1

In this section we characterize the nonempty subsets Y and Z of X_n such that the semigroups $\mathcal{OP}_n(Y)$ and $\mathcal{OP}_n(Z)$ (respectively, $\mathcal{OR}_n(Y)$ and $\mathcal{OR}_n(Z)$) are isomorphic. In this context, the dihedral group \mathcal{D}_{2n} of order 2n plays a relevant role. Recall that

$$\mathcal{D}_{2n} = \langle g, h \mid h^2 = g^n = hg^{n-1}hg^{n-1} = 1 \rangle$$

Moreover, if

$$g = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} \text{ and } h = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix},$$

we can consider the group \mathcal{D}_{2n} as being the subgroup of the symmetric group \mathcal{S}_n on X_n generated by this two permutations:

$$\mathcal{D}_{2n} = \{1, g, g^2, \dots, g^{n-1}, h, hg, hg^2, \dots, hg^{n-1}\}.$$

Notice that, for $j, k \in \{1, \ldots, n\}$, we have

$$(j)g^k = (j+k) \mod n \text{ and } (j)hg^k = (n-j+1+k) \mod n.$$
 (1)

From these relations, it is easy to deduce that any two distinct permutations of $\{1, g, g^2, \ldots, g^{n-1}\}$ do not coincide in any element of X_n . The same is true for any two distinct elements of $\{h, hg, hg^2, \ldots, hg^{n-1}\}$. Moreover, if a permutation of $\{1, g, g^2, \ldots, g^{n-1}\}$ coincides in i and j, for some $1 \le i < j \le n$, with a permutation of $\{h, hg, hg^2, \ldots, hg^{n-1}\}$ then n = 2(j-i). It follows that any two permutations of \mathcal{D}_{2n} which coincide in three elements of X_n must be equal and, furthermore, for an odd n, any two permutations of \mathcal{D}_{2n} which coincide in two elements of X_n must be equal. On the other hand, if a partial injective transformation α of X_n is a restriction of some element of \mathcal{D}_{2n} , then

$$|(j)\alpha - (i)\alpha| \in \{j - i, n - (j - i)\},\$$

for $i, j \in \text{Dom}(\alpha)$, with i < j. In fact, the converse also holds:

Proposition 1.1 A partial injective transformation α of X_n is a restriction of a permutation of \mathcal{D}_{2n} if and only if $|(j)\alpha - (i)\alpha| \in \{j - i, n - (j - i)\}, \text{ for all } i, j \in \text{Dom}(\alpha) \text{ such that } i < j.$

Proof The direct implication is an immediate consequence of the equalities (1). Conversely, take a partial injective transformation α of X_n such that $|(j)\alpha - (i)\alpha| \in \{j - i, n - (j - i)\}$, for all $i, j \in \text{Dom}(\alpha)$ with i < j. Let $i \in \text{Dom}(\alpha)$. It is easy to check that $(i)g^{n+i\alpha-i} = (i)\alpha = (i)hg^{i\alpha+i-1}$. Clearly, if $|\text{Dom}(\alpha)| \le 1$ then the result

follows immediately. Thus, we may assume that $|\text{Dom}(\alpha)| > 2$.

First, suppose that $Dom(\alpha) = \{i < j\}$. Then, it is easy to show: if $(j)\alpha - (i)\alpha \in \{j - i, -n + j - i\}$ then we also have $(j)g^{n+i\alpha-i} = (j)\alpha$, whence α is a restriction of $g^{n+i\alpha-i}$; on the other hand, if $(j)\alpha - (i)\alpha \in \{i-j, n-j+i\}$ then also $(j)hg^{i\alpha+i-1} = (j)\alpha$ and so α is a restriction of $hg^{i\alpha+i-1}$.

Secondly, consider $\text{Dom}(\alpha) = \{i < j < k\}$. Notice that $(k)\alpha - (i)\alpha = ((k)\alpha - (j)\alpha) + ((j)\alpha - (i)\alpha)$. Now, it requires only routine calculations to show that:

- 1. If $(j)\alpha (i)\alpha = j i$ then α is a restriction of $g^{n+i\alpha-i}$, unless $(k)\alpha (j)\alpha = j k$ and n = 2(j-i), in which case α is a restriction of $hg^{i\alpha+i-1}$;
- 2. If $(j)\alpha (i)\alpha = i j$ then α is a restriction of $hg^{i\alpha+i-1}$, unless $(k)\alpha (j)\alpha = k j$ and n = 2(j i), in which case α is a restriction of $g^{n+i\alpha-i}$;
- 3. If $(j)\alpha (i)\alpha = n j + i$ then α is a restriction of $hg^{i\alpha + i 1}$, unless either $(k)\alpha (j)\alpha = k j$ or $(k)\alpha (j)\alpha = -n + k j$ and n = 2(j - i), in which cases α is a restriction of $g^{n+i\alpha - i}$;
- 4. If $(j)\alpha (i)\alpha = -n + j i$ then α is a restriction of $g^{n+i\alpha-i}$, unless either $(k)\alpha (j)\alpha = j k$ or $(k)\alpha (j)\alpha = n k + j$ and n = 2(j - i), in which cases α is a restriction of $hg^{i\alpha+i-1}$.

Next, take $\text{Dom}(\alpha) = \{i < j < k < \ell\}$. By the previous case, we may find permutations $\sigma_1, \sigma_2, \sigma_3 \in \mathcal{D}_{2n}$ such that the restrictions of α to $\{i < j < k\}$, $\{i < k < \ell\}$ and $\{j < k < \ell\}$ are restrictions of σ_1, σ_2 and σ_3 , respectively. If $\sigma_1 \neq \sigma_2$ and $\sigma_1 \neq \sigma_3$ then, since σ_1 and σ_2 coincide in $\{i < k\}$ and σ_1 and σ_3 coincide in $\{j < k\}$, we have n = 2(k - i) and n = 2(k - j), whence i = j, which is a contradiction. Thus $\sigma_1 = \sigma_2$ or $\sigma_1 = \sigma_3$ and so α is a restriction of σ_1 .

Finally, suppose that $|\operatorname{Dom}(\alpha)| = m \geq 5$ and admit, by induction hypothesis, that any partial injective transformation β of X_n such that $|\operatorname{Dom}(\beta)| = m - 1$ and $|(j)\beta - (i)\beta| \in \{j - i, n - (j - i)\}$, for all $i, j \in \operatorname{Dom}(\beta)$ with i < j, is a restriction of a permutation of \mathcal{D}_{2n} . Let $\sigma_1, \sigma_2 \in \mathcal{D}_{2n}$ be such that the restrictions of α to $\operatorname{Dom}(\alpha) \setminus \{\min(\operatorname{Dom}(\alpha))\}$ and $\operatorname{Dom}(\alpha) \setminus \{\max(\operatorname{Dom}(\alpha))\}$ are restrictions of σ_1 and σ_2 , respectively. Then σ_1 and σ_2 coincide in $\operatorname{Dom}(\alpha) \setminus \{\min(\operatorname{Dom}(\alpha)), \max(\operatorname{Dom}(\alpha))\}$, a set with $m - 2 \geq 3$ elements, whence $\sigma_1 = \sigma_2$. Thus α is a restriction of a permutation of \mathcal{D}_{2n} , as required. \Box

Let $x \in X_n$. We denote by \mathcal{C}_x the constant transformation of \mathcal{T}_n with image $\{x\}$. Observe that, given $\alpha \in \mathcal{T}_n$, we have

$$\mathfrak{C}_x \alpha = \mathfrak{C}_{x\alpha} \tag{2}$$

and

$$\alpha \mathcal{C}_x = \mathcal{C}_x. \tag{3}$$

These immediate equalities allow us to easily deduce the following properties.

Lemma 1.2 Let Y and Z be nonempty subsets of X_n and let $\Theta : \mathcal{OP}_n(Y) \longrightarrow \mathcal{OP}_n(Z)$ be an isomorphism. Then:

- 1. For all $y \in Y$ there exists (a unique) $z \in Z$ such that $\mathfrak{C}_{y} \Theta = \mathfrak{C}_{z}$;
- 2. Θ induces a bijection $\theta: Y \longrightarrow Z$ defined by $\mathfrak{C}_y \Theta = \mathfrak{C}_{y\theta}$, for all $y \in Y$;
- 3. $(y\theta)(\alpha\Theta) = (y\alpha)\theta$, for all $y \in Y$ and $\alpha \in \mathcal{OP}_n(Y)$;
- 4. $\operatorname{Im}(\alpha \Theta) = (\operatorname{Im}(\alpha))\theta$, for any idempotent $\alpha \in \mathcal{OP}_n(Y)$.

Proof Let $y \in Y$. Then, by (3) we have $\alpha C_y = C_y$, for all $\alpha \in \mathcal{OP}_n(Y)$, whence $(\alpha \Theta)(C_y \Theta) = \alpha C_y \Theta = C_y \Theta$, for all $\alpha \in \mathcal{OP}_n(Y)$. Since Θ is surjective, it follows that $\beta(C_y \Theta) = C_y \Theta$, for all $\beta \in \mathcal{OP}_n(Z)$. In particular, given (any) $x \in Z$, we obtain $C_y \Theta = C_x(C_y \Theta) = C_{(x)(C_y \Theta)}$, using also equality (2). Thus $C_y \Theta = C_z$, with $z = (x)(C_y \Theta) \in Z$ (which does not depend of the taken $x \in Z$, since Θ is a function).

Therefore, we proved property 1 and so we have a well defined function $\theta: Y \longrightarrow Z$ satisfying the equality $\mathcal{C}_y \Theta = \mathcal{C}_{y\theta}$, for all $y \in Y$. A similar reasoning applied to the inverse isomorphism $\Theta^{-1}: \mathcal{OP}_n(Z) \longrightarrow \mathcal{OP}_n(Y)$ allows us to deduce the existence of a function $\theta': Z \longrightarrow Y$ satisfying the equality $\mathcal{C}_z \Theta^{-1} = \mathcal{C}_{z\theta'}$, for all $z \in Z$. Moreover, we have $\mathcal{C}_y = \mathcal{C}_y \Theta \Theta^{-1} = \mathcal{C}_{y\theta} \Theta^{-1} = \mathcal{C}_{y\theta\theta'}$, for all $y \in Y$, and similarly $\mathcal{C}_z = \mathcal{C}_{z\theta'\theta}$, for all $z \in Z$, which shows that θ and θ' are mutually inverse bijections. Thus, we just proved 2.

Next, we prove property 3. Let $y \in Y$ and $\alpha \in \mathcal{OP}_n(Y)$. Then

$$\mathcal{C}_{(y\theta)(\alpha\Theta)} = \mathcal{C}_{y\theta}(\alpha\Theta) = (\mathcal{C}_y\Theta)(\alpha\Theta) = (\mathcal{C}_y\alpha)\Theta = \mathcal{C}_{y\alpha}\Theta = \mathcal{C}_{(y\alpha)\theta},$$

by using equality (2), the definition of θ and the fact that Θ is a homomorphism, whence $(y\theta)(\alpha\Theta) = (y\alpha)\theta$.

It remains to prove 4. Let α be an idempotent of $\mathcal{OP}_n(Y)$. Then $\alpha\Theta$ is an idempotent of $\mathcal{OP}_n(Z)$ and so $\operatorname{Im}(\alpha\Theta) = \operatorname{Fix}(\alpha\Theta)$. Let $z \in \operatorname{Im}(\alpha\Theta) \subseteq Z$. Then $z = z(\alpha\Theta)$ and, on the other hand, $z = y\theta$, for some $y \in Y$. Hence, by property 3, $z = z(\alpha\Theta) = (y\theta)(\alpha\Theta) = (y\alpha)\theta \in (\operatorname{Im}(\alpha))\theta$. Conversely, let $z \in (\operatorname{Im}(\alpha))\theta$. Then $z = y\theta$, for some $y \in \operatorname{Im}(\alpha) \subseteq Y$. As α is an idempotent (hence $\operatorname{Im}(\alpha) = \operatorname{Fix}(\alpha)$), we have $y = y\alpha$ and so, by using property 3, we obtain $z = y\theta = (y\alpha)\theta = (y\theta)(\alpha\Theta) = z(\alpha\Theta) \in \operatorname{Im}(\alpha\Theta)$. Thus $\operatorname{Im}(\alpha\Theta) = (\operatorname{Im}(\alpha))\theta$, as required. \Box

Theorem 1.3 Let Y and Z be nonempty subsets of X_n . Then $\mathcal{OP}_n(Y)$ and $\mathcal{OP}_n(Z)$ are isomorphic if and only if there exists $\sigma \in \mathcal{D}_{2n}$ such that $Y\sigma = Z$.

Proof If there exists $\sigma \in \mathcal{D}_{2n}$ such that $Y\sigma = Z$, then it is easy to show that the mapping $\mathcal{OP}_n(Y) \to \mathcal{OP}_n(Z)$, $\alpha \mapsto \sigma^{-1}\alpha\sigma$, is an isomorphism. Conversely, suppose there exists an isomorphism $\Theta : \mathcal{OP}_n(Y) \longrightarrow \mathcal{OP}_n(Z)$ and let $\theta : Y \longrightarrow Z$ be the bijection induced by Θ given by Lemma 1.2. Let $i, j \in Y$ be such that i < j. Take

$$A(i,j) = \{ \alpha \in \mathcal{OP}_n(Y) \mid \alpha = \alpha^2 \text{ and } \operatorname{Im}(\alpha) = \{i < j\} \}.$$

Then, by Lemma 1.2, we have

$$A(i,j)\Theta = \{\beta \in \mathcal{OP}_n(Z) \mid \beta = \beta^2 \text{ and } \operatorname{Im}(\beta) = \{i\theta, j\theta\}\}$$

Moreover, by enumerating their elements, it is not difficult to conclude that |A(i,j)| = (j-i)(n-(j-i)) and $|A(i,j)\Theta| = |j\theta - i\theta|(n-|j\theta - i\theta|)$. As Θ is an isomorphism, we get $|A(i,j)\Theta| = |A(i,j)|$, i.e. $(j-i)(n-(j-i)) = |j\theta - i\theta|(n-|j\theta - i\theta|)$, whence $|j\theta - i\theta| = j - i$ or $|j\theta - i\theta| = n - (j - i)$. Therefore, by Proposition 1.1, it follows that θ is a restriction of some permutation σ of \mathcal{D}_{2n} and so $Z = Y\theta = Y\sigma$, as required. \Box

Now, observing that we can replace \mathcal{OP}_n by \mathcal{OR}_n in the proof of both Lemma 1.2 and Theorem 1.3 (also observe that all the idempotents of \mathcal{OR}_n belong to \mathcal{OP}_n), we obtain an analogous characterization:

Theorem 1.4 Let Y and Z be nonempty subsets of X_n . Then $\mathcal{OR}_n(Y)$ and $\mathcal{OR}_n(Z)$ are isomorphic if and only if there exists $\sigma \in \mathcal{D}_{2n}$ such that $Y\sigma = Z$.

We finish this section by determining the cardinality of $\mathcal{OP}_n(Y)$ and $\mathcal{OR}_n(Y)$, for each nonempty subset Y of X_n .

Recall that Catarino and Higgins showed in [4] that $|\mathcal{OP}_n| = n\binom{2n-1}{n-1} - n(n-1)$ and $|\mathcal{OR}_n| = n\binom{2n}{n} - \frac{n^2}{2}(n^2 - 2n + 5) + n$. One of the methods used by Catarino and Higgins to find this formula for $|\mathcal{OP}_n|$ consisted of counting the number of transformations of rank k, for $1 \le k \le n$. In fact, they showed that, for $2 \le k \le n$, the number of transformations with a fixed image of size k is $k\binom{n}{k}$. In addition, \mathcal{OP}_n has n constant transformations.

Now, let Y be a subset of X_n , with $1 \le |Y| = r \le n$. Since the number of distinct images contained in Y of size k is $\binom{r}{k}$, we get

$$|\{\alpha \in \mathcal{OP}_n(Y) \mid |\operatorname{Im}(\alpha)| = k\}| = k \binom{n}{k} \binom{r}{k},$$

for $2 \leq k \leq r$. As $\mathcal{OP}_n(Y)$ also contains r constant transformations, it follows that

$$|\mathcal{OP}_n(Y)| = r + \sum_{k=2}^r k \binom{r}{k} \binom{n}{k} = \sum_{k=1}^r k \binom{r}{k} \binom{n}{k} - r(n-1).$$

Noticing that $\sum_{k=1}^{r} k\binom{r}{k}\binom{n}{k} = r\binom{n+r-1}{r}$ (Combinatorial Identity (3.30) of [13, page 25]), we obtain:

Theorem 1.5 Let Y be a subset of X_n of size r, for $1 \le r \le n$. Then $|\mathcal{OP}_n(Y)| = r\binom{n+r-1}{r} - r(n-1)$.

Regarding \mathcal{OR}_n , Catarino and Higgins [4] proved that, for $3 \leq k \leq n$, the number of transformations with a fixed image of size k is $2k \binom{n}{k}$. Moreover, they also observed that $\{\alpha \in \mathcal{OR}_n \mid |\operatorname{Im}(\alpha)| \leq 2\} = \{\alpha \in \mathcal{OP}_n \mid |\operatorname{Im}(\alpha)| \leq 2\}$. Therefore

$$|\mathcal{OR}_{n}(Y)| = r + 2\binom{r}{2}\binom{n}{2} + \sum_{k=3}^{r} 2k\binom{r}{k}\binom{n}{k} = 2\sum_{k=1}^{r} k\binom{r}{k}\binom{n}{k} - 2\binom{r}{2}\binom{n}{2} - 2rn + r$$

and so, by using again the above combinatorial identity, we obtain:

Theorem 1.6 Let Y be a subset of X_n of size r, for $1 \le r \le n$. Then $|\mathcal{OR}_n(Y)| = 2r\binom{n+r-1}{r} - \frac{rn}{2}(rn-r-n+5) + r$.

Notice that the sizes of $\mathcal{OP}_n(Y)$ and $\mathcal{OR}_n(Y)$ just depend of the size of Y.

2 Regularity and Green's relations

Recall that Catarino and Higgins showed in [4] that both \mathcal{OP}_n and \mathcal{OR}_n are regular semigroups. Thus, Green's relations \mathcal{L} and \mathcal{R} in \mathcal{OP}_n and in \mathcal{OR}_n are just restrictions of the correspondent relations in \mathcal{T}_n . This is also the case for Green's relation \mathcal{D} , as proved by Catarino and Higgins in [4]. Therefore, if $\alpha, \beta \in \mathcal{OP}_n$ [respectively, $\alpha, \beta \in \mathcal{OR}_n$], we have

- 1. $\alpha \mathcal{L}\beta$ if and only if $\operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$,
- 2. $\alpha \Re \beta$ if and only if $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$ and
- 3. $\alpha \mathcal{D}\beta$ if and only if $|\operatorname{Im}(\alpha)| = |\operatorname{Im}(\beta)|$,

in \mathcal{OP}_n [respectively, \mathcal{OR}_n]. Regarding Green's relation \mathcal{H} , if α is an element of \mathcal{OP}_n of rank k, for $1 \leq k \leq n$, then the \mathcal{H} -class in \mathcal{OP}_n of α has k elements (all with the same domain and image); in particular, the \mathcal{H} -class in \mathcal{OP}_n of an idempotent of rank k, for $1 \leq k \leq n$, is a cycle group of order k; if α is an element of \mathcal{OR}_n of rank k, for $3 \leq k \leq n$, then the \mathcal{H} -class in \mathcal{OR}_n of α has 2k elements (all with the same domain and image); in particular, the \mathcal{H} -class in \mathcal{OR}_n of an idempotent of rank k, for $3 \leq k \leq n$, is a dihedral group of order 2k; if α is an element of \mathcal{OR}_n of rank 1 or 2, then the \mathcal{H} -class in \mathcal{OR}_n of α has 1 or 2 elements (all with the same domain and image), respectively; in particular, the \mathcal{H} -class in \mathcal{OR}_n of an idempotent of rank 1 or 2 is a cycle group of order 1 or 2, respectively. These facts were proved in [4]. See also [16].

Let Y be a nonempty subset of X_n of size r $(1 \le r \le n)$. In this section we discuss regularity and give descriptions for Green's relations of $\mathcal{OP}_n(Y)$ and $\mathcal{OR}_n(Y)$.

Let

$$F\mathcal{OP}_n(Y) = \{ \alpha \in \mathcal{OP}_n(Y) \mid \operatorname{Im}(\alpha) = Y\alpha \}$$

and

$$FOR_n(Y) = \{ \alpha \in OR_n(Y) \mid Im(\alpha) = Y\alpha \}.$$

Clearly $FOP_n(Y)$ and $FOR_n(Y)$ are right ideals of $OP_n(Y)$ and $OR_n(Y)$, respectively. In fact, we will show that these subsets determine relevant aspects of the structure of $OP_n(Y)$ and $OR_n(Y)$. Regarding the regularity, we have:

Theorem 2.1 Let Y be a nonempty subset of X_n . Then $FOP_n(Y)$ [respectively, $FOR_n(Y)$] is the set of all regular elements of $OP_n(Y)$ [respectively, $OR_n(Y)$]. Furthermore:

- 1. $FOP_n(Y)$ [respectively, $FOR_n(Y)$] is the largest regular subsemigroup of $OP_n(Y)$ [respectively, $OR_n(Y)$];
- 2. $\mathcal{OP}_n(Y)$ [respectively, $\mathcal{OR}_n(Y)$] is regular if and only if |Y| = 1 or $Y = X_n$.

Proof If α is a regular element of $\mathcal{OP}_n(Y)$ [respectively, $\mathcal{OR}_n(Y)$], then $\alpha = \alpha\beta\alpha$, for some $\beta \in \mathcal{OP}_n(Y)$ [respectively, $\beta \in \mathcal{OR}_n(Y)$], whence $X\alpha = (X\alpha\beta)\alpha \subseteq Y\alpha$ and so $X\alpha = Y\alpha$, i.e. $\alpha \in F\mathcal{OP}_n(Y)$ [respectively, $\alpha \in F\mathcal{OR}_n(Y)$].

Conversely, take $\alpha \in FOP_n(Y)$ [respectively, $\alpha \in FOR_n(Y)$] and suppose that $Im(\alpha) = \{a_1 < \cdots < a_k\}$, for some $a_1, \ldots, a_k \in Y$, with $1 \leq k \leq |Y|$. Then there exist $b_1, \ldots, b_k \in Y$ such that $b_i\alpha = a_i$, for $1 \leq i \leq k$. Let β be the transformation of X_n defined by

$$x\beta = \begin{cases} b_k & \text{if } 1 \le x < a_1 \text{ or } a_k \le x \le n \\ b_j & \text{if } a_j \le x < a_{j+1} \text{ and } 1 \le j \le k-1 \end{cases}.$$

It is easy to check that $\beta \in \mathcal{OP}_n(Y)$ [respectively, $\beta \in \mathcal{OR}_n(Y)$] and $\alpha = \alpha \beta \alpha$. Thus α is a regular element of $\mathcal{OP}_n(Y)$ [respectively, $\mathcal{OR}_n(Y)$].

Hence, we proved that $FOP_n(Y)$ [respectively, $FOR_n(Y)$] is the set of all regular elements of $OP_n(Y)$ [respectively, $OR_n(Y)$].

Statement 1 is obvious, since $FOP_n(Y)$ and $FOR_n(Y)$ are subsemigroups of $OP_n(Y)$ and $OR_n(Y)$, respectively.

Regarding statement 2, if Y is a proper subset of X_n such that $|Y| \ge 2$ then we may consider two distinct elements $y, y' \in Y$ and an element $z \in X_n \setminus Y$. Thus, we define a transformation α on X_n by $x\alpha = y$, if x = z, and $x\alpha = y'$, if $x \in X_n \setminus \{z\}$. Clearly, $\alpha \in \mathcal{OP}_n(Y)$ and, since $\operatorname{Im}(\alpha) = \{y, y'\}$ and $Y\alpha = \{y'\}$, α is not regular both in $\mathcal{OP}_n(Y)$ and $\mathcal{OR}_n(Y)$. For the converse, we already recalled that $\mathcal{OP}_n = \mathcal{OP}_n(X_n)$ and $\mathcal{OR}_n = \mathcal{OR}_n(X_n)$ are regular semigroups and, on the other hand, if |Y| = 1 then $\mathcal{OP}_n(Y) = \mathcal{OR}_n(Y)$ is trivial (it is just formed by the constant mapping with range Y), whence a regular semigroup, as required. \Box

We finish this section with the following characterization of Green's relations in $\mathcal{OP}_n(Y)$ and in $\mathcal{OR}_n(Y)$:

Theorem 2.2 Let Y be a nonempty subset of X_n of size r. Let $S = \mathcal{OP}_n(Y)$ or $S = \mathcal{OR}_n(Y)$. Let $\alpha, \beta \in S$. Then:

- 1. $\alpha \mathcal{L}\beta$ in S if and only if either $\alpha = \beta$ or both α and β are regular and $\operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$;
- 2. $\alpha \Re \beta$ in S if and only if $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$;
- 3. $\alpha \mathcal{D}\beta$ in S if and only if either (i) both α and β are regular and $|\operatorname{Im}(\alpha)| = |\operatorname{Im}(\beta)|$ or (ii) both α and β are not regular and $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$;
- 4. If α is a non-regular element of $\mathcal{OP}_n(Y)$ then the \mathfrak{H} -class in $\mathcal{OP}_n(Y)$ of α is trivial; if α is a regular element of $\mathcal{OP}_n(Y)$ of rank k, for $1 \le k \le r$, then the \mathfrak{H} -class in $\mathcal{OP}_n(Y)$ of α has k elements (all with the same domain and image); in particular, the \mathfrak{H} -class in $\mathcal{OP}_n(Y)$ of an idempotent of rank k, for $1 \le k \le r$, is a cycle group of order k;
- 5. If α is a non-regular element of $\mathcal{OR}_n(Y)$ then the \mathfrak{H} -class in $\mathcal{OR}_n(Y)$ of α is trivial; if α is a regular element of $\mathcal{OR}_n(Y)$ of rank k, for $3 \leq k \leq r$, then the \mathfrak{H} -class in $\mathcal{OR}_n(Y)$ of α has 2k elements (all with the same domain and image); in particular, the \mathfrak{H} -class in $\mathcal{OR}_n(Y)$ of an idempotent of rank k, for $3 \leq k \leq r$, is a dihedral group of order 2k; if α is a regular element of $\mathcal{OR}_n(Y)$ of rank 1 or 2, then the \mathfrak{H} -class in $\mathcal{OR}_n(Y)$ of α has 1 or 2 elements (all with the same domain and image), respectively; in particular, the \mathfrak{H} -class in $\mathcal{OR}_n(Y)$ of an idempotent of rank 1 or 2 is a cycle group of order 1 or 2, respectively.

Proof 1. First, suppose that $\alpha \mathcal{L}\beta$ in S. Then $\alpha = \gamma\beta$ and $\beta = \lambda\alpha$, for some $\gamma, \lambda \in S^1$. If $\alpha \neq \beta$ then $\gamma \neq 1$ and $\lambda \neq 1$, whence $X\alpha = X\gamma\beta \subseteq Y\beta \subseteq X\beta = X\lambda\alpha \subseteq Y\alpha \subseteq X\alpha$ and so $\operatorname{Im}(\alpha) = Y\alpha = Y\beta = \operatorname{Im}(\beta)$, i.e. α and β are regular and $\operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$.

The converse is obvious, since $\operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$ implies $\alpha \mathcal{L}\beta$ in \mathcal{T}_n and so, being either $\alpha = \beta$ or α and β are regular elements in S, it follows that $\alpha \mathcal{L}\beta$ in S (in fact, no matter who is the subsemigroup S of \mathcal{T}_n).

2. If $\alpha \mathcal{R}\beta$ in S then $\alpha \mathcal{R}\beta$ in \mathcal{T}_n and so $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$.

In order to prove the converse, it is useful to introduce the following notation. Let $I = \{i_1 < \cdots < i_k\}$ be a nonempty subset of X_n $(1 \le k \le n)$. Define the transformation ι_I of \mathcal{T}_n by

$$x\iota_I = \begin{cases} i_k & \text{if } 1 \le x < i_1 \text{ or } i_k \le x \le n \\ i_j & \text{if } i_j \le x < i_{j+1} \text{ and } 1 \le j \le k-1 \end{cases}.$$

Clearly, ι_I is an idempotent of \mathcal{OP}_n with image (fixed points) *I*. In particular, if $I \subseteq Y$ then $\iota_I \in \mathcal{OP}_n(Y)$.

Now, take $T = \mathcal{OP}_n$ for $S = \mathcal{OP}_n(Y)$ and $T = \mathcal{OR}_n$ for $S = \mathcal{OR}_n(Y)$. Suppose that $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$. Then $\alpha \mathcal{R}\beta$ in T and so $\alpha = \beta\gamma$ and $\beta = \alpha\lambda$, for some $\gamma, \lambda \in T$. Thus, it is clear that we also have $\alpha = \beta\iota_{\operatorname{Im}(\beta)}\gamma$ and $\beta = \alpha\iota_{\operatorname{Im}(\alpha)}\lambda$. Moreover, since $\iota_{\operatorname{Im}(\beta)}\gamma$ and $\iota_{\operatorname{Im}(\alpha)}\lambda$ have the same rank of α (and β), it follows that $\operatorname{Im}(\iota_{\operatorname{Im}(\beta)}\gamma) = \operatorname{Im}(\alpha)$ and $\operatorname{Im}(\iota_{\operatorname{Im}(\alpha)}\lambda) = \operatorname{Im}(\beta)$, whence $\iota_{\operatorname{Im}(\beta)}\gamma, \iota_{\operatorname{Im}(\alpha)}\lambda \in S$ and so $\alpha \mathcal{R}\beta$ in S.

3. If $\alpha \mathcal{D}\beta$ in S then there exists $\gamma \in S$ such that $\alpha \mathcal{L}\gamma$ and $\gamma \mathcal{R}\beta$ in S. On the other hand, we also have $\alpha \mathcal{D}\beta$ in \mathcal{T}_n and so $|\operatorname{Im}(\alpha)| = |\operatorname{Im}(\beta)|$. Moreover, as in any semigroup, either both α and β are regular or both α and β are non regular. Hence, in case both α and β are non regular, it follows that γ is also non regular and thus $\alpha = \gamma$ and $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\gamma) = \operatorname{Ker}(\beta)$.

Conversely, if (both α and β are not regular and) $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$ then $\alpha \mathcal{R}\beta$ in S and so $\alpha \mathcal{D}\beta$ in S. On the other hand, suppose that both α and β are regular and $|\operatorname{Im}(\alpha)| = |\operatorname{Im}(\beta)|$. Then $\alpha \mathcal{D}\beta$ in T (with T as defined above) and so $\alpha = \gamma_1 \beta \gamma_2$ and $\beta = \lambda_1 \alpha \lambda_2$, for some $\gamma_1, \gamma_2, \lambda_1, \lambda_2 \in T$. Let $\beta' \in S$ be an inverse of β . Then $\alpha = (\gamma_1 \beta \beta')\beta(\beta'\beta\gamma_2)$. Clearly, $\gamma_1\beta\beta' \in S$. On the other hand, since $\beta'\beta\gamma_2$ has the same rank as α , it should have the same image as α , whence also $\beta'\beta\gamma_2 \in S$. Similarly, if $\alpha' \in S$ is an inverse of α then $\beta = (\lambda_1 \alpha \alpha')\alpha(\alpha'\alpha\lambda_2)$ and $\lambda_1 \alpha \alpha', \alpha'\alpha\lambda_2 \in S$. Thus, also in this case, $\alpha \mathcal{D}\beta$ in S.

Properties 4 and 5 are immediate, since \mathcal{L} -classes in S of non regular elements are trivial and it is clear that \mathcal{H} -classes in T (with T as defined above) of regular elements of S must coincide with the respective \mathcal{H} -classes in S. \Box

3 Ranks

Let Y be a nonempty subset of X_n . In this section we determine the ranks of the semigroups $\mathcal{OP}_n(Y)$ and $\mathcal{OR}_n(Y)$. Surprisingly, as opposed to the case of $\mathcal{O}_n(Y)$ [8], we will show that the ranks of $\mathcal{OP}_n(Y)$ and $\mathcal{OR}_n(Y)$ only depend of the size of Y.

It is well known that \mathcal{OP}_n and \mathcal{OR}_n have, respectively, ranks 2 and 3 (see [2, 4]). Therefore, in what follows, we suppose that Y is a proper subset of X_n . Let r = |Y|.

We begin by showing that $\mathcal{OP}_n(Y)$ is generated by its elements of rank r.

Lemma 3.1 Any transformation of $\mathcal{OP}_n(Y)$ of rank k is a product of two elements of $\mathcal{OP}_n(Y)$ of rank k+1, for $1 \le k < r$.

Proof Let α be an element of $\mathcal{OP}_n(Y)$ of rank k. By [4, Theorem 2.6], there exist $\beta \in \mathcal{O}_n$ and $0 \leq t < n$ such that $\alpha = g^t \beta$, where g is the permutation of X_n defined in Section 1. Since g^t is a permutation, then $\operatorname{Im}(\beta) = \operatorname{Im}(\alpha)$ and so, in addition, $\beta \in \mathcal{O}_n(Y)$. Now, by [8, Lemma 3.5], there exist transformations $\beta_1, \beta_2 \in \mathcal{O}_n(Y)$ of rank k + 1 such that $\beta = \beta_1 \beta_2$. Let $\alpha_1 = g^t \beta_1$. Then $\beta_1 \in \mathcal{OP}_n$. Again, since g^t is a permutation, we have $\operatorname{Im}(\alpha_1) = \operatorname{Im}(\beta_1)$, whence α_1 is an element of $\mathcal{OP}_n(Y)$ with rank k + 1. Thus, $\alpha = \alpha_1 \beta_2$, with both α_1 and β_2 elements of $\mathcal{OP}_n(Y)$ of rank k + 1, as required. \Box

From this lemma, it follows immediately that $\mathcal{OP}_n(Y)$ is generated by its elements of rank r.

Now, suppose that $Y = \{y_1 < y_2 < \cdots < y_r\}$. Let

$$\widehat{g}_Y = \begin{pmatrix} A_1 & A_2 & \cdots & A_{r-1} & A_r \\ y_2 & y_3 & \cdots & y_r & y_1 \end{pmatrix} \in \mathcal{OP}_n(Y),$$

where $A_j = \{y_j, \dots, y_{j+1} - 1\}, 1 \le j \le r - 1$, and $A_r = \{y_r, \dots, n, 1, \dots, y_1 - 1\}.$

Lemma 3.2 Let $\alpha, \beta \in \mathcal{OP}_n(Y)$ be two elements of rank r such that $\operatorname{Ker}(\beta) = \operatorname{Ker}(\alpha)$. Then $\beta = \alpha \widehat{g}_Y^k$, for some $k \in \{0, \ldots, r-1\}$.

Proof Suppose that I_1, I_2, \ldots, I_k are the kernel classes of α (and β) in order max $I_i < \max I_{i+1}$, for $i = 1, \ldots, r-1$. Then

$$\alpha = \begin{pmatrix} I_1 & I_2 & \cdots & I_{r-i} & I_{r-i+1} & I_{r-i+2} & \cdots & I_r \\ y_{i+1} & y_{i+2} & \cdots & y_r & y_1 & y_2 & \cdots & y_i \end{pmatrix}$$

and

$$\beta = \left(\begin{array}{c|c|c} I_1 & I_2 & \cdots & I_{r-j} & I_{r-j+1} & I_{r-j+2} & \cdots & I_r \\ y_{j+1} & y_{j+2} & \cdots & y_r & y_1 & y_2 & \cdots & y_j \end{array}\right),$$

for some $1 \leq i, j \leq r$. Take k = j - i, if $i \leq j$, and k = r - i + j, otherwise. Hence, it is a routine matter to prove that $\beta = \alpha \widehat{g}_V^k$, as required. \Box

Now, notice that any generating set of $\mathcal{OP}_n(Y)$ (and of $\mathcal{OR}_n(Y)$) must contain at least one element from each distinct kernel of transformations of rank r. On the other hand, the number of distinct kernels of transformations of $\mathcal{OP}_n(Y)$ (and of $\mathcal{OR}_n(Y)$) of rank r coincides with the number of distinct kernels of transformations of \mathcal{OP}_n of rank r, which is precisely $\binom{n}{r}$ (see [4]). These observations, together with the previous two lemmas, prove the following result.

Theorem 3.3 The semigroup $\mathcal{OP}_n(Y)$ is generated by any subset of transformations of rank r containing \widehat{g}_Y and at least one element from each distinct kernel. Furthermore, $\mathcal{OP}_n(Y)$ has rank equal to $\binom{n}{r}$.

Next, let

$$\widetilde{h}_Y = \begin{pmatrix} B_1 & B_2 & \cdots & B_{r-1} & B_r \\ y_r & y_{r-1} & \cdots & y_2 & y_1 \end{pmatrix} \in \mathcal{OR}_n(Y),$$

where $B_1 = \{1, \dots, y_1, y_r + 1, \dots, n\}$ and $B_j = \{y_{j-1} + 1, \dots, y_j\}, 2 \le j \le r$.

Notice that

$$\operatorname{Ker}(h_Y) = \operatorname{Ker}(\widehat{g}_Y) \quad \Longleftrightarrow \quad B_j = A_j, \ 1 \le j \le r \quad \Longleftrightarrow \quad B_j = A_j = \{y_j\}, \ 1 \le j \le r \quad \Longleftrightarrow \quad r = n$$

whence \tilde{h}_Y and \hat{g}_Y have distinct kernels. On the other hand, clearly

$$\widetilde{h}_Y^2 = \begin{pmatrix} B_1 & B_2 & \cdots & B_{r-1} & B_r \\ y_1 & y_2 & \cdots & y_{r-1} & y_r \end{pmatrix} \in \mathcal{OP}_n(Y)$$

is a right identity of $\mathcal{OR}_n(Y)$. Thus, if $\alpha \in \mathcal{OR}_n(Y) \setminus \mathcal{OP}_n(Y)$ then $\alpha = (\alpha \tilde{h}_Y)\tilde{h}_Y$, with $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\alpha \tilde{h}_Y)$ and $\alpha \tilde{h}_Y \in \mathcal{OP}_n(Y)$. Therefore, it is easy to conclude:

Theorem 3.4 The semigroup $\mathcal{OR}_n(Y)$ is generated by any subset of transformations of rank r containing both \widehat{g}_Y and \widetilde{h}_Y and at least one element from each distinct kernel. Furthermore, $\mathcal{OR}_n(Y)$ has rank equal to $\binom{n}{r}$.

Acknowledgment

We wish to thank the anonymous referee for her/his valuable suggestions.

References

- J. Araújo, V.H. Fernandes, M.M. Jesus, V.Maltcev and J.D. Mitchell, Automorphisms of partial endomorphism semigroups, Publicationes Mathematicae Debrecen, 79.1-2 (2011), 23–39.
- [2] R.E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math. 24 (2000), 1–7.
- [3] P.M. Catarino, Monoids of orientation-preserving transformations of a finite chain and their presentations, Proc. of the Conference in St Andrews, Scotland, 1997 (1998), 39–46.
- [4] P.M. Catarino and P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), 190–206.
- [5] I. Dimitrova, V.H. Fernandes and J. Koppitz, The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain, Publicationes Mathematicae Debrecen, 81.1-2 (2012), 11–29.
- [6] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of transformation preserving the orientation on a finite chain, J. Algebra 321 (2009), 743–757.
- [7] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, The cardinal and the idempotent number of various monoids of transformations on a finite chain, Bulletin of the Malaysian Mathematical Sciences Society (2) 34 (2011), 79–85.
- [8] V.H. Fernandes, P. Honyam, T.M. Quinteiro and B. Singha, On semigroups of endomorphisms of a chain with restricted range, Semigroup Forum (DOI: 10.1007/s00233-013-9548-x) (to appear).
- [9] V.H. Fernandes and T.M. Quinteiro, Bilateral semidirect product decompositions of transformation monoids, Semigroup Forum 82 (2011), 271–287.
- [10] V.H. Fernandes and T.M. Quinteiro, The cardinal of various monoids of transformations that preserve a uniform partition, Bulletin of the Malaysian Mathematical Sciences Society (4) 35 (2012), 885–896.
- [11] V.H. Fernandes and T.M. Quinteiro, On the ranks of certain monoids of transformations that preserve a uniform partition, Communications in Algebra 42 (2014), 615–636.
- [12] V.H. Fernandes and J. Sanwong, On the rank of semigroups of transformations on a finite set with restricted range, Algebra Colloq. 21 (2014), 497–510.
- [13] H.W. Gould, Combinatorial identities, Morgantown, W. Va., 1972.
- [14] J.M. Howie, Fundamentals of Semigroup Theory, Oxford, Oxford University Press, 1995.
- [15] S. Mendes-Gonçalves and R.P. Sullivan, The ideal structure of semigroups of transformations with restricted range, Bull. Austral. Math. Soc. 83 (2011) 289–300.
- [16] D.B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998) 515–547.
- [17] W. Mora and Y. Kemprasit, Regular elements of some order-preserving transformation semigroups, Int. J. Algebra 4 (2010), no. 13-16, 631–641.
- [18] S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. Appl. 16 (2005), no. 3, 307–314.
- [19] J. Sanwong and W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 2008, Art. ID 794013, 11 pp.
- [20] J. Sanwong, B. Singha and R.P. Sullivan, Maximal and minimal congruences on some semigroups, Acta Math. Sin. (Engl. Ser.) 25(3) (2009) 455–466.

- [21] R.P. Sullivan, Semigroups of linear transformations with restricted range, Bull. Austral. Math. Soc. 77 (2008) 441–453.
- [22] J.S.V. Symons, Some results concerning a transformation semigroup, J. Austral. Math. Soc. 19 (Series A) (1975) 413–425.
- [23] P. Zhao and V.H. Fernandes, The ranks of ideals in various transformation monoids, Communications in Algebra (to appear).

VÍTOR H. FERNANDES, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal; also: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal; e-mail: vhf@fct.unl.pt

PREEYANUCH HONYAM, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; e-mail: preeyanuch_h@hotmail.com

TERESA M. QUINTEIRO, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1950-062 Lisboa, Portugal; also: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal; e-mail: tmelo@adm.isel.pt

BOORAPA SINGHA, Department of Mathematics and Statistics, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand; e-mail: boorapas@yahoo.com