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Abstract
In this paper we consider various classes of monoids of transformations of a finite chain, including those of transforma-
tions that preserve or reverse either the order or the orientation. In line with Howie and McFadden [24], we complete
the study of the ranks (and of idempotent ranks, when applicable) of all their ideals.
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Introduction and preliminaries

As usual we denote by PTn the monoid of all partial transformations of a finite setXn with n elements (under composition),
by Tn the submonoid of PTn of all full transformations of Xn, by In the symmetric inverse semigroup on Xn, i.e. the
submonoid of PTn of all injective partial transformations of Xn, and by Sn the symmetric group on Xn, i.e. the subgroup
of PTn of all injective full transformations (permutations) of Xn.

Let now Xn be a chain with n elements, say Xn = {1 < 2 < · · · < n}. We say that a transformation s 2 PTn is
order-preserving (respectively, order-reversing) if x  y implies xs  ys (respectively, xs � ys), for all x, y 2 Dom(s).
Denote by POn the submonoid of PTn of all order-preserving transformations and by On the monoid POn \ Tn of all
full transformations of Xn that preserve the order. The injective counterpart of On, i.e. the inverse monoid POn \ In
of all order-preserving injective partial transformations is denoted by POIn. Further classes of monoids are obtained
by considering transformations that either preserve or reverse the order. In this way, we get the submonoid PODn of
PTn of all partial transformations that preserve or reverse the order, as well as its submonoids ODn = PODn \ Tn and
PODIn = PODn \ In.

The order-preserving and order-reversing notions can be generalized as follows. Let c = (c1, c2, . . . , ct) be a sequence
of t (t � 0) elements from the chain Xn. We say that c is cyclic (respectively, anti-cyclic) if there exists no more
than one index i 2 {1, . . . , t} such that ci > ci+1 (respectively, ci < ci+1), where ct+1 denotes c1. Let s 2 PTn

and suppose that Dom(s) = {a1, . . . , at}, with t � 0 and a1 < · · · < at. We say that s is orientation-preserving
(respectively, orientation-reversing) if the sequence of its image (a1s, . . . , ats) is cyclic (respectively, anti-cyclic). Denote
by POPn the submonoid of PTn of all orientation-preserving transformations and by PORn the submonoid of PTn

of all orientation-preserving transformations together with all orientation-reversing transformations. Also, let OPn =
POPn \ Tn, POPIn = POPn \ In, ORn = PORn \ Tn and PORIn = PORn \ In.

The relationship between these various monoids, with respect to the inclusion relation, is represented by the diagram
bellow (where 1 denotes the trivial monoid and Cn the cyclic group of order n).
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Let S be a semigroup. Denote by S1 the monoid obtained from S through the adjoining of an identity if S has none
and exactly S otherwise. Recall the definition of Green’s equivalence relations R, L, H and J: for all u, v 2 S,

uRv if and only if uS1 = vS1;
uLv if and only if S1u = S1v;
uHv if and only if uRv and uLv;
uJv if and only if S1uS1 = S1vS1.

Associated to Green’s relation J there is a quasi-order J on S defined by

u J v if and only if S1uS1 ✓ S1vS1,

for all u, v 2 S. Notice that, for every u, v 2 S, we have u J v if and only if u J v and v J u. Denote by JS
u the J-class

of the element u 2 S. As usual, a partial order relation J is defined on the quotient set S/J by putting JS
u J JS

v if and
only if u J v, for all u, v 2 S. Given a subset A of S and u 2 S, we denote by E(A) set of idempotents of S belonging
to A and by LS

u , R
S
u and HS

u the L-class, R-class and H-class of u, respectively. For general background on Semigroup
Theory, we refer the reader to Howie’s book [23].

Let Mn denotes any of the monoids Tn, On, ODn, OPn, ORn, PTn, POn, PODn, POPn, PORn, In, POIn,
PODIn, POPIn or PORIn. Then Mn is regular and, in particular, if Mn 2 {In,POIn,PODIn,POPIn,PORIn},
it is an inverse monoid. On the other hand, Green’s relations L and R of Mn can be characterized by sLt if and
only if Im(s) = Im(t), for all s, t 2 Mn, and sRt if and only if Ker(s) = Ker(t), for all s, t 2 Mn. For Mn 2
{In,POIn,PODIn,POPIn,PORIn}, we can more specifically describe R by sRt if and only if Dom(s) = Dom(t),
for all s, t 2 Mn. Regarding Green’s relation J, we have s J t if and only if | Im(s)|  | Im(t)| and so sJt if and only if
| Im(s)| = | Im(t)|, for all s, t 2 Mn. It follows that the partial order J on the quotient Mn/J is linear. More precisely,
letting

JMn
r = {s 2 Mn | | Im(s)| = r},

i.e. the J-class of the transformations of image size r (called the rank of the transformations) of Mn, for 0  r  n, we
have

Mn/J = {JMn
1 J JMn

2 J · · · J JMn
n },

for Mn 2 {Tn,On,ODn,OPn,ORn}, and
Mn/J = {JMn

0 J JMn
1 J · · · J JMn

n },
for the remaining cases. See [3, 7, 8, 9, 11, 12, 18, 23] for more details.

Since Mn/J is a chain, the sets

M(n, r) = {s 2 Mn | | Im(s)|  r} = JMn
0 [ JMn

1 [ · · · [ JMn
r ,

with 1  r  n, constitute all the non-null ideals of Mn (see [9, Note of page 181]). Notice that, if Mn is a full
transformation monoid then JMn

0 just represents the empty set, while in the other cases JMn
0 contains only the empty

transformation.

As usual, the rank of a finite semigroup S is defined by rankS = min{|A| | A ✓ S, hAi = S}. If S is generated by
its set E of idempotents, then the idempotent rank of S is defined by idrankS = min{|A| | A ✓ E, hAi = S}. Clearly,
rankS  idrankS. Throughout this paper we consider always generators of semigroups, i.e. generators of algebras of
type 2, even in the cases we are dealing with inverse semigroups. The notions of rank and idempotent rank are taken
accordingly.

Notice that the rank (and the idempotent rank, when applicable) of a finite semigroup S is always greater than or equal
to the number of its R-classes contained in maximal J-classes and to the number of its L-classes contained in maximal
J-classes. This follows immediately from the fact that s R t (respectively, s L t) and sJt if and only if sRt (respectively,
sLt), for all s, t 2 S. Thus, in particular, the rank (and the idempotent rank, when applicable) of the semigroup M(n, r)
is, in any case, at least equal to the number of R-classes of rank r of Mn and to the number of L-classes of rank r of Mn,
for 1  r  n.

For n � 3, the ranks of PT n = PT (n, n), In = I(n, n) and Tn = T (n, n) are equal to 4, 3 and 3, respectively. These
are well known results and all of them have reasonably easy proofs. See [23, pages 39, 41 and 211] for example.

On the other hand, the rank of the semigroup of singular mappings Singn = {↵ 2 Tn | | Im(↵)|  n � 1} is more
di�cult to determine. In [17], Gomes and Howie proved that both the rank and the idempotent rank of Singn are equal
to n(n� 1)/2. This result was later generalized by Howie and McFadden [24] who showed that the rank and idempotent
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rank of the semigroups T (n, r) = {↵ 2 Tn | | Im(↵)|  r} are both equal to S(n, r), the Stirling number of the second
kind, for 2  r  n� 1.

In [14], Garba considered the semigroup PT (n, r) = {↵ 2 PT n | | Im(↵)|  r} and showed that, for 2  r  n � 1,
both its rank and idempotent rank are equal to S(n+ 1, r + 1).

Regarding the partial injective counterparts, Gomes and Howie [17] showed that the rank of the semigroup SPn =
{↵ 2 In | | Im(↵)|  n � 1}, as inverse semigroup, is n + 1. Garba [16] generalized this result by showing that the rank
(as inverse semigroup) of I(n, r) = {↵ 2 In | | Im(↵)|  r} is

�n
r

�
+ 1 for 3  r  n� 1,

�n
2

�
for r = 2, and n� 1 for r = 1.

The ranks of the remaining semigroups represented in the above diagram have also been studied. In fact, Gomes and
Howie [18] calculated the ranks of the monoids POn and On. In [2] Catarino calculated the rank of the monoid OPn

and the rank of the monoid ORn was determined by Arthur and Ruškuc in [1]. The ranks of the monoids ODn,PODn,
POPn and PORn were determined by Fernandes, Gomes and Jesus in [11, 12], and the ranks of the monoids POIn and
POPIn were determined by Fernandes in [8, 9].

Concerning the ranks of their ideals, in same cases they are completely studied, in others just partially. In fact, in
addition to the ideals of Tn and PTn above mentioned, these are the cases of the semigroups O(n, r) and PO(n, r) [18, 15],
for 2  r  n�1, and of the semigroups POI(n, n�1) [9] and OP(n, n�1) [27]. The remaining cases are considered here
for the first time, including the study of the ranks of I(n, r), for 1  r  n � 1. Notice that, for these last semigroups,
Gomes and Howie [17] and Garba [16] have studied their ranks as inverse semigroups.

Observe that, being On, POn and POIn aperiodic monoids (i.e. H-trivial), their ranks as monoids, i.e. as algebras
of type (2,0), coincide with the ranks of the semigroups O(n, n� 1), PO(n, n� 1) and POI(n, n� 1), respectively.

This paper is organized as follows. In Section 1, we calculate the ranks of OD(n, r) and POD(n, r), while in Section
2, we establish the ranks of OP(n, r) and OR(n, r). In Section 3, we determine the ranks of POP(n, r) and POR(n, r).
Finally, Section 4 is dedicated to the study of the ranks of POI(n, r), PODI(n, r), POPI(n, r), PORI(n, r) and I(n, r).
A summary of all results presented in this paper is given in Section 5.

Throughout this paper we always assume that n � 4.

We would like to acknowledge the use of GAP [13], a system for computational discrete algebra.

1 The ranks of OD(n, r) and POD(n, r)

Recall that the ranks and idempotent ranks of the semigroups O(n, r) and PO(n, r) were computed by Garba [15] for
2  r < n� 1 and by Gomes and Howie [18] for r = n� 1. They showed that O(n, r) and PO(n, r), with 2  r  n� 1,
have ranks

�n
r

�
and

Pn
k=r

�n
k

��k�1
r�1

�
, respectively. It is easy to show that these formulas also hold for r = 1. Notice that

O(n, 1) = T (n, 1) and PO(n, 1) = PT(n, 1). On the other hand, for 1  r  n � 2, the idempotent ranks of O(n, r) and
PO(n, r) coincide with their respective ranks. However, for r = n� 1 this is not the case. In fact, the idempotent ranks
of O(n, n� 1) and PO(n, n� 1) are 2n� 2 and 3n� 2, respectively.

The ranks of the monoids ODn and PODn were established by Fernandes, Gomes and Jesus in [11]. These monoids
are not idempotent generated. In fact, we have E(ODn) = E(On) and E(PODn) = E(POn). Likewise, for r � 2, since
O(n, r) ( OD(n, r) and PO(n, r) ( POD(n, r), the semigroups OD(n, r) and POD(n, r) are not idempotent generated.

In this section we aim to show that the ranks of OD(n, r) and POD(n, r) coincide with the ranks of O(n, r) and
PO(n, r), respectively.

We begin by recalling that Dimitrova and Koppitz [5, Corollary 4] proved:

Lemma 1.1 For 1  r  n�1, the semigroup OD(n, r) is generated by its idempotents of rank r together with any single

order-reversing transformation of rank r.

We must observe that Corollary 4 of [5] was stated for some order-reversing transformation of rank r instead of for
any, as we presented above. However, they indeed proved the stronger version we are stating in Lemma 1.1. See also [19,
Lemma 1].

Next, for PODn, we aim to prove a result analogous to Lemma 1.1.
First, recall that Garba [15], for 2  r < n� 1, and Gomes and Howie [18], for r = n� 1, proved:

Lemma 1.2 For 2  r  n� 1, the semigroup PO(n, r) is generated by its idempotents of rank r.

Secondly, let 2  r  n � 1 and take ↵ 2 POD(n, r) with rank 1  k  r. Suppose that ↵ =

✓
I1 I2 · · · Ik
j1 j2 · · · jk

◆
.

Notice that {I1, . . . , Ik} forms a partition into intervals of Dom(↵). For 1  `  k, let i` = min I` (naturally, we are
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assuming that i1 < i2 < · · · < ik). Define

"↵ =

✓
I1 I2 · · · Ik
i1 i2 · · · ik

◆
, ↵ =

✓{1, . . . , i2 � 1} {i2, . . . , i3 � 1} · · · {ik�1, . . . , ik � 1} {ik, . . . , n}
j1 j2 · · · jk�1 jk

◆

and

"↵ =

✓{1, . . . , i2 � 1} {i2, . . . , i3 � 1} · · · {ik�1, . . . , ik � 1} {ik, . . . , n}
i1 i2 · · · ik�1 ik

◆
.

Then, we have

"↵ 2 PO(n, r) , ↵ 2 JODn
k ⇢ OD(n, r) , "↵ 2 E(JOn

k ) , ↵ = "↵↵ and ↵ = "↵↵ .

Notice that, by Lemma 1.2, we also have "↵ 2 hE(JPOn
r )i. Further, if ↵ is an order-reversing transformation then so is ↵.

Now, let � be an order-reversing element of JPODn
r and let � and "� be defined as above (taking � in place of ↵). Then

� is an order-reversing full transformation of rank r and so, by Lemma 1.1, we have OD(n, r) = hE(JOn
r ), �i. Moreover,

� = "��, with "� 2 E(JOn
r ), whence � 2 hE(JOn

r ), �i.
Therefore, returning to ↵, we have ↵ = "↵↵, with "↵ 2 hE(JPOn

r )i and ↵ 2 OD(n, r) = hE(JOn
r ), �i ⇢ hE(JOn

r ), �i ⇢
hE(JPOn

r ), �i, and so ↵ 2 hE(JPOn
r ), �i.

Thus, we have proved:

Lemma 1.3 For 2  r  n � 1, the semigroup POD(n, r) is generated by its idempotents of rank r together with any

single order-reversing partial transformation of rank r.

Now, let Mn be either the monoid On or the monoid POn. Similarly, let MDn be either the monoid ODn or the
monoid PODn. Taking into account the above cited results of Garba [15] and Gomes and Howie [18], for r � 2 we may
take a generating set {s1, s2, . . . , sp} of M(n, r) with p =

�n
r

�
, if Mn = On, and p =

Pn
k=r

�n
k

��k�1
r�1

�
, if Mn = POn.

Moreover, in addition, we may suppose that s1 is an idempotent of rank r (in fact, if r  n � 2 then the same may be
assumed for the remaining s2, . . . , sp generators). Let � be the order-reversing transformation with the same kernel and
image of s1. Then �2 = s1 and, by applying Lemmas 1.1 and 1.3, we may deduce that MD(n, r) = hM(n, r), �i. Since
M(n, r) = hs1, s2, . . . , spi ⇢ h�, s2, . . . , spi, it follows that {�, s2, . . . , sp} is a generating set of MD(n, r).

Finally, by noticing that, like On, the monoid ODn has
�n
r

�
L-classes of rank r and, like POn, the monoid PODn hasPn

k=r

�n
k

��k�1
r�1

�
R-classes of rank r, we conclude our aim of this section.

Theorem 1.4 For 1  r  n� 1, we have rankOD(n, r) =
�n
r

�
and rankPOD(n, r) =

Pn
k=r

�n
k

��k�1
r�1

�
.

Observe that, for r = 1 the above result is simply justified by the equalities OD(n, 1) = O(n, 1) = T (n, 1) and
POD(n, 1) = PO(n, 1) = PT(n, 1).

We finish this section by proving the above statements on the ranks and the idempotents ranks of T (n, 1) and PT(n, 1),
which are not mentioned by the referred authors (or by others, as far as we know).

Regarding the semigroup T (n, 1), since it is a right-zero semigroup of size n, its rank and idempotent rank have to
match its size, i.e. idrank T (n, 1) = rank T (n, 1) = n =

�n
1

�
. The case of PT(n, 1) is not so trivial. Nevertheless, it is a

routine matter to show that (for instance) the set formed by the (idempotent) elements
✓
1 2 · · · n
1 1 · · · 1

◆
,

✓
1 2 · · · n� 1
2 2 · · · 2

◆
,

✓
1 · · · i� 2 i · · · n
i · · · i i · · · i

◆
, for i = 3, . . . , n,

and any other single idempotent element from each of the remaining non-zero R-classes of PT(n, 1) generates PT(n, 1).
Since PT(n, 1) has 2n � 1 R-classes of rank 1, it follows that idrankPT(n, 1) = rankPT(n, 1) = 2n � 1 =

Pn
k=1

�n
k

��k�1
0

�
.

2 The ranks of OP(n, r) and OR(n, r)

It is well known that the ranks of the monoids OPn and ORn are equal to 2 and 3, respectively; see [2, 25] and also
[1]. On the other hand, both the rank and the idempotent rank of the semigroup OP(n, n � 1) are equal to n and were
calculated by Zhao in [27] (see also [28]).

In this section we complete the study of the ranks and idempotent ranks of the ideals of OPn and we determine
the ranks of the ideals of ORn. Notice that, for r � 3, the semigroup OR(n, r) is not idempotent generated. In fact,
E(OPn) = E(ORn) and, for r � 3, we have OP(n, r) ( OR(n, r). Observe also that OP(n, 1) = OR(n, 1) = O(n, 1) =
T (n, 1) and OP(n, 2) = OR(n, 2).
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Let 2  r  n� 1. Then, given a transformation ↵ 2 OPn of rank r, it is easy to show that if (1, n) 62 Ker↵ then all
kernel classes of ↵ are intervals of Xn and, on the other hand, if (1, n) 2 Ker↵ then all kernel classes of ↵ are intervals
of Xn, except for the class containing 1 and n which is a union of two intervals of Xn (one containing 1 and the other
n). Therefore, we may establish a one-to-one correspondence between the collection of all subsets of Xn of cardinality r
(which consists of all possible images of elements of rank r of OPn) and the collection of all possible kernels of elements
of rank r of OPn as follows: associate to each r-set {a1, a2, . . . , ar}, with 1  a1 < a2 < · · · < ar  n, the r-partition
{A1, . . . , Ar} of Xn defined by

Ai = {ai, ai + 1, . . . , ai+1 � 1}, for i = 1, . . . , r � 1, and Ar = {ar, . . . , n} [ {1, . . . , a1 � 1} (1)

(if a1 = 1 then, naturally, {1, . . . , a1 � 1} denotes the empty set). Thus, the J-class JOPn
r of OPn (and of OP(n, r))

contains
�n
r

�
R-classes and

�n
r

�
L-classes. See [3] for more details.

Now, for 1  a1 < a2 < · · · < ar  n, define

"a1,a2,...,ar =

✓
A1 A2 · · · Ar

a1 a2 · · · ar

◆
,

where {A1, . . . , Ar} is the r-partition of Xn associated to {a1, a2, . . . , ar} as in (1). Clearly, "a1,a2,...,ar 2 E(JOPn
r ).

Moreover, the set
Er = {"a1,a2,...,ar | 1  a1 < a2 < · · · < ar  n}

contains exactly one (idempotent) element from each R-class and from each L-class of OPn of rank r.
It is easy to check the following lemma.

Lemma 2.1 Let 0 = a0 < 1  a1 < a2 < · · · < ar  n and a 2 Xn.

1. If ai�1 < a  ai, for some i = 1, . . . , r, then {a1, a2, . . . , ar} is a transversal of "a1,...,ai�1,a,ai+1,...,ar .

2. If ar < a  n then {a1, a2, . . . , ar} is a transversal of "a2,...,ar,a.

Notice that, given any two transformations ↵,� 2 PTn of rank r, the product ↵� is a transformation of rank r if and
only if Im(↵) is a transversal of Ker(�), in which case Ker(↵�) = Ker(↵) and Im(↵�) = Im(�). This observation and
Lemma 2.1 allow us to prove:

Lemma 2.2 Let 2  r  n� 1. Then E(JOPn
r ) ✓ hEri.

Proof. Take " 2 E(JOPn
r ). Let 1  a1 < a2 < · · · < ar  n and 1  bn�r+1 < bn�r+2 < · · · < bn  n be such that

Ker(") = Ker("a1,a2,...,ar ) and Im(") = {bn�r+1, bn�r+2, . . . , bn}.
Observe that i  ai, for i = 1, . . . , r, and j � bj , for j = n� r + 1, . . . , n. Then, by Lemma 2.1,

↵1 = "a1,a2,...,ar"1,a2,...,ar"1,2,a3,...,ar · · · "1,2,...,r 2 JOPn
r ,

↵2 = "1,2,...,r"2,...,r,r+1 · · · "n�r,...,n�2,n�1"n�r+1,n�r+2,...,n 2 JOPn
r ,

↵3 = "n�r+1,n�r+2,...,n"bn�r+1,n�r+2,...,n"bn�r+1,bn�r+2,n�r+3,...,n · · · "bn�r+1,bn�r+2,...,bn 2 JOPn
r

and
↵ = ↵1↵2↵3 2 JOPn

r .

Moreover, Ker(↵) = Ker(") and Im(↵) = Im("). Since " in an idempotent, it follows that " = ↵!, for some ! 2 N, whence
" 2 hEri, as required. ⇤

Now, recall that Zhao [27, Theorems 1.1 and 2.1] (and, independently, Dimitrova, Fernandes and Koppitz [6, Corollary
1.9]) proved:

Lemma 2.3 For 1  r  n� 1, the semigroup OP(n, r) is generated by its idempotents of rank r.

Thus, combining Lemmas 2.2 and 2.3, we immediately deduce:

Proposition 2.4 For 2  r  n� 1, the set Er generates OP(n, r).

The following lemma was also proved by Dimitrova, Fernandes and Koppitz [6, Corollary 2.10].

5



Lemma 2.5 For 3  r  n�1, the semigroup OR(n, r) is generated by its idempotents of rank r together with any single

orientation-reversing transformation of rank r.

Now, consider the following elements of ORn of rank r:

"1,2,...,r =

✓
1 2 · · · r � 1 {r, r + 1, . . . , n}
1 2 · · · r � 1 r

◆
2 Er and e"1,2,...,r =

✓
1 2 · · · r � 1 {r, r + 1, . . . , n}
r r � 1 · · · 2 1

◆
.

Clearly, e"1,2,...,r 2 JORn
r \ JOPn

r . Let
eEr = (Er \ {"1,2,...,r}) [ {e"1,2,...,r}.

Then Er ✓ h eEri (since e" 2
1,2,...,r = "1,2,...,r). Therefore, by Proposition 2.4 and Lemma 2.5, it follows:

Proposition 2.6 For 3  r  n� 1, the set

eEr generates OR(n, r).

Since the sets Er and eEr have cardinality
�n
r

�
, which equals the number of R-classes (and, in fact, also of L-classes) of

rank r of both semigroups OP(n, r) and OR(n, r), from Propositions 2.4 and 2.6, our main result of this section follows
immediately.

Theorem 2.7 For 1  r  n� 1, we have idrankOP(n, r) = rankOP(n, r) = rankOR(n, r) =
�n
r

�
.

Observe that Propositions 2.4 and 2.6 were stated for r � 2 and r � 3, respectively. However, we also have OR(n, 2) =
OP(n, 2) and, on the other hand, OR(n, 1) = OP(n, 1) = T (n, 1). This justifies the full range 1  r  n � 1 in the
previous theorem.

3 The ranks of POP(n, r) and POR(n, r)

The ranks of the monoids POPn and PORn were determined by Fernandes, Gomes and Jesus in [12]. Regarding their
ideals, only the rank and the idempotent rank of the semigroup POP(n, n� 1) are known up to now and these numbers
were calculated by Zhao in [28].

Notice that we have PO(n, 1) = POP(n, 1) = POR(n, 1) = PT(n, 1), POP(n, 2) = POR(n, 2) and, for 3  r  n,
POP(n, r) ( POR(n, r). Since E(PORn) = E(POPn), it follows that POR(n, r) is not idempotent generated for r � 3.

In this section we aim to finish the study of the ranks and idempotent ranks of POP(n, r) and to determine the ranks
of the ideals of PORn.

The structures of the monoids POPn and PORn were also studied by Fernandes, Gomes and Jesus in [12]. In
particular, they showed that, for 2  r  n, the number of R-classes of rank r and of L-classes of rank r of these two
monoids are

�n
r

�
2n�r and

�n
r

�
, respectively. Observe also that each R-class of OPn is also an entire R-class of POPn and,

on the other hand, each L-class of POPn contains exactly one L-class of OPn. The same properties are valid for ORn

with respect to PORn.

Consider the element g =

✓
1 2 · · · n� 1 n
2 3 · · · n 1

◆
of POPn and let s 2 POP(n, r), with 2  r  n � 1. Then,

by [12, Proposition 1.2], we have s = giu, for some 0  i  n � 1 and u 2 POn. Clearly, we must also have u 2
PO(n, r). Now, recall again that Garba [15], for 2  r < n � 1, and Gomes and Howie [18], for r = n � 1, proved that
PO(n, r) = hE(JPOn

r )i. Then, u = e1e2 · · · ek, for some k 2 N and e1, e2, . . . , ek 2 E(JPOn
r ). Hence s = (gie1)e2 · · · ek,

with gie1, e2, . . . , ek 2 JPOPn
r . Thus, we proved:

Lemma 3.1 Let 2  r  n� 1. Then POP(n, r) = hJPOPn
r i.

Let 2  r  n � 1 and let Er be as defined in Section 2. Recall that Er is formed by
�n
r

�
idempotents and contains

exactly one element from each R-class and from each L-class of OPn of rank r. Consequently, the set Er also has exactly
one element from each L-class of POPn of rank r.

Let m =
�n
r

�
and p =

�n
r

�
2n�r. Since POPn is regular (see [8, Proposition 2.3]), we may choose idempotents

"m+1, . . . , "p of POPn covering all R-classes of POPn contained in JPOPn
r \ JOPn

r . Take

Fr = Er [ {"m+1, . . . , "p}.
Notice that Fr has exactly one (idempotent) element from each R-class of POPn of rank r.

Lemma 3.2 Let 2  r  n� 1. Then POP(n, r) = hFri.
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Proof. Let k 2 {m+ 1, . . . , p}. Since Er has (exactly) one idempotent from each L-class of POPn of rank r, then there
exists e"k 2 Er such that "kLe"k. It follows that "ke"k = "k and, by Green’s Lemma, the map x 7! "kx is a bijection from
RPOPn

e"k onto RPOPn

"ke"k = RPOPn
"k . Hence RPOPn

"k = "kR
POPn

e"k .
Therefore, we have

JPOPn
r = JOPn

r [
p[

k=m+1

RPOPn
"k = JOPn

r [
p[

k=m+1

"kR
POPn

e"k = JOPn
r [

p[

k=m+1

"kR
OPn

e"k .

Now, as ROPn

e"k ⇢ JOPn
r ⇢ OP(n, r), for all k 2 {m + 1, . . . , p}, and OP(n, r) = hEri, by Proposition 2.4, it follows that

JPOPn
r ⇢ hFri. Finally, by Lemma 3.1, we conclude that POP(n, r) = hFri, as required. ⇤

Next, let 3  r  n � 1 and take ↵ 2 POR(n, r) an element of rank k = 1, . . . , r. Then, we may suppose that

↵ =

✓
I0 I1 · · · Ik
jk j1 · · · jk

◆
, where {I0, I1, . . . , Ik} is a partition into intervals of Dom(↵), admitting that I0 may be empty.

See [12], for more details. For 1  `  k, let i` = min I` and i0 = max I0, if I0 6= ;, or i0 = 0, otherwise (naturally, we are
assuming that i0 < i1 < i2 < · · · < ik). Define

"↵ =

✓
I0 I1 I2 · · · Ik
ik i1 i2 · · · ik

◆
,

↵ =

✓{1, . . . , i0} {i0 + 1, . . . , i2 � 1} {i2, . . . , i3 � 1} · · · {ik�1, . . . , ik � 1} {ik, . . . , n}
jk j1 j2 · · · jk�1 jk

◆

and

"↵ =

✓{1, . . . , i0} {i0 + 1, . . . , i2 � 1} {i2, . . . , i3 � 1} · · · {ik�1, . . . , ik � 1} {ik, . . . , n}
ik i1 i2 · · · ik�1 ik

◆
.

Then, we have

"↵ 2 POP(n, r) , ↵ 2 JORn
k ⇢ OR(n, r) , "↵ 2 E(JOPn

k ) , ↵ = "↵↵ and ↵ = "↵↵ .

Moreover, if ↵ is an orientation-reversing transformation then so is ↵.
Now, a similar reasoning to the proof of Lemma 1.3, using this time Lemmas 3.2 and 2.5 instead of Lemmas 1.2 and

1.1, respectively, allows us to prove:

Lemma 3.3 For 3  r  n � 1, the semigroup POR(n, r) is generated by its idempotents of rank r together with any

single orientation-reversing partial transformation of rank r.

Consider again the transformations "1,2,...,r and e"1,2,...,r defined in Section 2. Then, we have "1,2,...,r 2 Er ⇢ Fr and
e"1,2,...,r 2 JPORn

r \ JPOPn
r . Let

eFr = (Fr \ {"1,2,...,r}) [ {e"1,2,...,r}.
Since e" 2

1,2,...,r = "1,2,...,r, we have Fr ✓ h eFri and so, by Lemmas 3.2 and 3.3, we have:

Lemma 3.4 Let 3  r  n� 1. Then POR(n, r) = h eFri.

Since POR(n, 2) = POP(n, 2) and the sets Fr and eFr have cardinality
�n
r

�
2n�r, i.e. the number of R-classes of rank

r of the semigroups POP(n, r) and POR(n, r), our main theorem of this section follows from Lemmas 3.2 and 3.4.

Theorem 3.5 For 2  r  n� 1, we have idrankPOP(n, r) = rankPOP(n, r) = rankPOR(n, r) =
�n
r

�
2n�r

.

4 The ranks of POI(n, r), PODI(n, r), POPI(n, r), PORI(n, r) and I(n, r)
The structure of the symmetric inverse monoid In is well known (see [23], for instance). The structures and the ranks of
the monoids POIn and POPIn were studied by Fernandes (see [7, 8, 9]) and of the monoids PODIn and PORIn by
Fernandes, Gomes and Jesus (see [10] and also [4]).

In any of these five monoids, the number of L-classes of rank r is
�n
r

�
, which (being inverse semigroups) coincides with

the number of R-classes of rank r, for 1  r  n. Also, all the five share the same set (semilattice) of idempotents formed
by all partial identities. Consequently, none of them is idempotent generated.

7



The monoid POIn is aperiodic. The maximal subgroups of the J-class of rank r of the monoid PODIn are cyclic of
order two, for 2  r  n, and trivial, for r = 1. Regarding the monoid POPIn, the maximal subgroups of its J-class of
rank r are cyclic of order r, for 1  r  n. The maximal subgroups of the J-class of rank r of the monoid PORIn are
dihedral of order 2r, for 3  r  n, cyclic of order two, for r = 2, and trivial, for r = 1. Finally, the maximal subgroups
of the J-class of rank r of the monoid In are isomorphic to the symmetric group Sr, for 1  r  n.

It is clear that POI(n, 1) = PODI(n, 1) = POPI(n, 1) = PORI(n, 1) = I(n, 1), PODI(n, 2) = POPI(n, 2) =
PORI(n, 2) = I(n, 2) and PORI(n, 3) = I(n, 3).

Our objective in this section is to determine the ranks of the semigroups POI(n, r), PODI(n, r), POPI(n, r),
PORI(n, r) and I(n, r), for 1  r  n � 1. Recall that by rank we mean always the rank as semigroup, i.e. as al-
gebra of type 2. Notice that, Gomes and Howie [17] and Garba [16] determined the ranks of I(n, r), for 1  r  n� 1, as
inverse semigroups, i.e. as algebras of type (2,1).

Let 1  r  n� 1.
Recall that Fernandes proved in [9, Proposition 2.8] that rank of the semigroup POI(n, n�1) is n (the same as POIn

as monoid). Also in [9] (see Proof of Lemma 2.7) the following result is proved:

Lemma 4.1 Any element of POIn of rank k is a product of elements of POIn of rank k + 1, for 0  k  n� 2.

As an immediate consequence, we have:

Corollary 4.2 The semigroup POI(n, r) is generated by its elements of rank r.

Now, consider the permutation (reflection) h =

✓
1 2 · · · n� 1 n
n n� 1 · · · 2 1

◆
of Xn.

Recall that the semigroup PODIn is generated by POIn [ {h} (see [10, Proposition 3.4]). Using a similar argument,
we show:

Corollary 4.3 The semigroup PODI(n, r) is generated by its elements of rank r.

Proof. Let s 2 PODI(n, r). Then sh 2 POI(n, r) and so, by Corollary 4.2, we have sh = s1 · · · s`�1s`, for some elements
s1, . . . , s` 2 POIn (` 2 N) of rank r. Since h2 = 1 then s = s1 · · · s`�1(s`h), a product of elements of PODIn of rank r,
as required. ⇤

Next, consider again the permutation (n-cycle) g =

✓
1 2 · · · n� 1 n
2 3 · · · n 1

◆
of Xn. Recall that the semigroup

POPIn is generated by POIn [ {g} [8, Corollary 3.2]. This result is an immediate consequence of the following lemma
[8, Proposition 3.1]:

Lemma 4.4 Let s 2 POPIn. Then there exist i 2 {0, 1, . . . , n� 1} and t 2 POIn such that s = git.

Combining this lemma with Corollary 4.3, we have:

Corollary 4.5 The semigroup POPI(n, r) is generated by its elements of rank r.

Proof. Let s 2 POPI(n, r). Then, by the previous lemma, s = git, for some i 2 {0, 1, . . . , n � 1} and t 2 POIn. As g
is a permutation, we have t 2 POI(n, r). Hence, t = s1s2 · · · s`, for some elements s1, . . . , s` 2 POIn (` 2 N) of rank r.
Thus s = (gis1)s2 · · · s`, a product of elements of POPIn of rank r, as required. ⇤

Now, recall also that the semigroup PORIn is generated by POPIn [ {h} (see [10, Theorem 5.5]). Again, by using
a similar argument, we show:

Corollary 4.6 The semigroup PORI(n, r) is generated by its elements of rank r.

Proof. Let s 2 PORI(n, r). Then sh 2 POPI(n, r) and so, by Corollary 4.5, we have sh = s1 · · · s`�1s`, for some
elements s1, . . . , s` 2 POPIn (` 2 N) of rank r. Since h2 = 1 then s = s1 · · · s`�1(s`h), a product of elements of PORIn

of rank r, as required. ⇤

Finally, we consider the ideals of the symmetric inverse monoid In. As an immediate consequence of Gomes and Howie
[17] and Garba [16] results on the rank (as inverse semigroup) of I(n, r), we have:

Lemma 4.7 The semigroup I(n, r) is generated by its elements of rank r.
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In fact, it is very easy to show that any element of In of rank k is a product of two elements of In of rank k + 1, for
0  k  n� 2, from which the previous lemma also follows immediately.

Now, let m =
�n
r

�
and

�Xn

r

�
= {Yi | i = 1, . . . ,m} (the family of all subsets of Xn of size r). For 1  i, j  m, denote

by
�Yi

Yj

�
the unique element s of POIn such that Dom(s) = Yi and Im(s) = Yj (see [7, Lemma 2.1]). Notice that

⇢✓
Yi

Yj

◆
| 1  i, j  m

�

is the set of all elements of POI(n, r) of rank r. Define si =
� Yi

Yi+1

�
, for 1  i  m� 1, and sm =

�Ym

Y1

�
. Thus, we have:

Proposition 4.8 The set {s1, . . . , sm} generates the semigroup POI(n, r).
Proof. By Corollary 4.2, it su�ces to show that any element of POIn of rank r is a product of the elements s1, . . . , sm.
Let i, j 2 {1, . . . ,m}. Then �Yi

Yj

�
=

� Yi

Yi+1

� · · · �Ym�1

Ym

��Ym

Y1

��Y1

Y2

� · · · �Yj�1

Yj

�
= si · · · sm�1sms1 · · · sj�1, as required. ⇤

Our next lemma, which is a simple consequence of Green’s Lemma, gives us a general framework that we will apply
to several cases.

Lemma 4.9 Let S be a finite semigroup and let J be a (regular) J-class of S. Let G be a maximal subgroup of S contained

in J and let W be a subset of S having at least one element from each H-class of S contained in J . Then J ✓ hW,Gi.
Proof. Let e be the identity of G.

First, we show that RS
e ✓ hW,Gi. Let s 2 RS

e and take c 2 HS
s \ W . Then ec = c and so, by Green’s Lemma, the

mapping x 7! xc is a bijection from G = HS
e onto HS

c . Hence HS
s = HS

c = Gc ✓ hW,Gi and thus RS
e ✓ hW,Gi.

Now, let s be any element of J and take c 2 RS
s \ LS

e \ W . Then ce = c and so, by Green’s Lemma, the mapping
x 7! cx is a bijection from RS

e onto RS
c . Hence RS

s = RS
c = cRS

e ✓ hW,Gi and thus J ✓ hW,Gi, as required. ⇤

For convenience, from now on, we assume Y1 = {1, . . . , r} and Ym = {n� r + 1, . . . , n}. Define:

esm =

✓
n� r + 1 n� r + 2 · · · n� 1 n

r r � 1 · · · 2 1

◆
, 2  r  n� 1

(observe that esm 2 PODI(n, r), Dom(esm) = Ym and Im(esm) = Y1);

bsm =

✓
n� r + 1 n� r + 2 · · · n� 1 n

2 3 · · · r 1

◆
, 3  r  n� 1

(observe that bsm 2 POPI(n, r), Dom(bsm) = Ym and Im(bsm) = Y1); and

s0 =

✓
1 2 3 · · · r
2 1 3 · · · r

◆
, 3  r  n� 1

(observe that s0 2 I(n, r), Dom(s0) = Y1 and Im(s0) = Y1). Then, we have:

Proposition 4.10 The set {s1, . . . , sm�1, esm} generates the semigroup PODI(n, r), for 2  r  n � 1, and the sets

{s1, . . . , sm�1, bsm}, {s1, . . . , sm�1, esm, bsm} and {s1, . . . , sm�1, bsm, s0} generate the semigroups POPI(n, r), PORI(n, r)
and I(n, r), respectively, for 3  r  n� 1.

Proof. Let 2  r  n� 1 and take es =
✓

1 2 · · · r
r r � 1 · · · 1

◆
. Then, since es generates a maximal subgroup of PODIn

contained in JPODIn
r , by Lemmas 4.8 and 4.9, we have JPODIn

r ✓ hJPOIn
r , esi = hs1, . . . , sm, esi. Hence, by Corollary 4.3,

the set {s1, . . . , sm, es} generates PODI(n, r). Now, as

es =
✓
Y1

Y2

◆
· · ·

✓
Ym�1

Ym

◆✓
n� r + 1 n� r + 2 · · · n

r r � 1 · · · 1

◆
= s1 · · · sm�1esm

and

sm =

✓
Ym

Y1

◆
=

✓
n� r + 1 n� r + 2 · · · n

r r � 1 · · · 1

◆✓
1 2 · · · r
r r � 1 · · · 1

◆
= esmes,

9



it follows that {s1, . . . , sm�1, esm} also generates PODI(n, r).
From now on, consider 3  r  n� 1.

Let gr =

✓
1 2 · · · r � 1 r
2 3 · · · r 1

◆
. Then gr generates a cyclic group of order r, i.e. a maximal subgroup of POPIn

contained in JPOPIn
r . Again, by Lemmas 4.8 and 4.9, it follows that JPOPIn

r ✓ hJPOIn
r , gri = hs1, . . . , sm, gri and, by

Corollary 4.5, that the set {s1, . . . , sm, gr} generates POPI(n, r). Now, since

gr =

✓
Y1

Y2

◆
· · ·

✓
Ym�1

Ym

◆✓
n� r + 1 · · · n� 1 n

2 · · · r 1

◆
= s1 · · · sm�1bsm

and

sm =

✓
Ym

Y1

◆
=

✓
n� r + 1 · · · n� 1 n

2 · · · r 1

◆✓
1 2 · · · r � 1 r
r 1 · · · r � 2 r � 1

◆
= bsmgr�1

r ,

we also have that {s1, . . . , sm�1, bsm} generates POPI(n, r).
Next, by noticing that {es, gr} generates a dihedral group of order 2r, whence a maximal subgroup of PORIn con-

tained in JPORIn
r , once again, by Lemmas 4.8 and 4.9, it follows that JPORIn

r ✓ hJPOIn
r , es, gri = hs1, . . . , sm, es, gri =

hs1, . . . , sm�1, esm, bsmi. Thus, by Corollary 4.6, the set {s1, . . . , sm�1, esm, bsm} generates PORI(n, r).
Finally, observe that {s0, gr} generates the symmetric group Sr, i.e. a maximal subgroup of In contained in JIn

r . Once
again, by Lemmas 4.8 and 4.9, we have JIn

r ✓ hJPOIn
r , gr, s0i = hs1, . . . , sm, gr, s0i = hs1, . . . , sm�1, bsm, s0i. Then, by

Corollary 4.7, the set {s1, . . . , sm�1, bsm, s0} generates I(n, r), as required. ⇤

Before presenting our last main result, we prove the following lemma.

Lemma 4.11 Let S be a finite inverse semigroup and let J be a maximal J-class of S with k L-classes and containing a

non-cyclic subgroup. Then rankS � k + 1.

Proof. Since J is maximal and has k L-classes (and, consequently, k R-classes), then rankS � k. Suppose by contradiction
that rankS = k and let A = {a1, . . . , ak} be a generating set of S with k elements. Then J = LS

a1
[· · ·[LS

ak
= RS

a1
[· · ·[RS

ak
.

Take i 2 {1, . . . , k}. Since each L-class of S contains exactly one idempotent and, on the other hand, aiaj 2 J if and
only if aiaj 2 RS

ai
\LS

aj
if and only if E(LS

ai
\RS

aj
) 6= ;, for all j 2 {1, . . . , k}, then there exists a unique j 2 {1, . . . , k} such

that aiaj 2 J . Thus A induces a permutation � of {1, . . . , k} (defined by i� = j if and only if aiaj 2 J , for 1  i, j  k).
Now, let 1  i, j  k. Since an element s 2 RS

ai
\LS

aj
has to be of the form s = aiuaj , for some product u of elements

of A, then i and j must be in the same orbit of �. Therefore � is a k-cycle.
Next, for instance, take an element s 2 RS

a1
\ LS

a1�k�1
. Then, s = (a1a1� · · · a1�k�1)`, for some ` � 1. (Observe that

the maximal subgroups of J are the H-classes RS
ai

\ LS
ai�k�1

, for i 2 {1, . . . , k}.) It follows that RS
a1

\ LS
a1�k�1

is a cyclic

group (generated by a1a1� · · · a1�k�1) and so all maximal subgroups of S contained in J are cyclic groups, which is a
contradiction. Thus rankS � k + 1, as required. ⇤

Regarding that POI(n, r), PODI(n, r), POPI(n, r), PORI(n, r) and I(n, r) have
�n
r

�
L-classes of rank r, and

PORI(n, r) and I(n, r), for r � 3, have non-cyclic subgroups inside their maximal J-class, in view of Propositions 4.8
and 4.10 and of Lemma 4.11, we immediately have:

Theorem 4.12 For r 2 {1, . . . , n � 1}, the semigroups POI(n, r), PODI(n, r) and POPI(n, r) have rank

�n
r

�
. For

r 2 {3, . . . , n� 1}, the rank of both semigroups PORI(n, r) and I(n, r) is �n
r

�
+ 1.

Observe that the rank of the semigroup I(n, r) coincides with its rank as inverse semigroup, for 2  r  n. However,
this is not the case for r = 1. The first is n, by Theorem 4.12, while the second is n� 1, by [16, Theorem 2.2].

Finally, notice that, regarding an inverse semigroup, since the rank as semigroup is always less than or equal to the
rank as inverse semigroup, in fact to prove Theorem 4.12, by the results of Gomes and Howie [17] and Garba [16], we
would only require Lemma 4.11 for the case of PORI(n, r).

5 Summary

The following tables summarize the results presented in this paper, including the ones previously proved by several authors
and mentioned along the text. Notice that all ranks and idempotent ranks presented in the tables are semigroup ranks,
i.e. we are always considering algebras of type (2).

For semigroups of partial transformations, we have:
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rank idrank

PT n 4 n/a

PT (n, r), 1  r  n� 1 S(n+ 1, r + 1) S(n+ 1, r + 1)

PORn 4 n/a

POR(n, r), 3  r  n� 1
�n
r

�
2n�r n/a

POR(n, 2)
�n
2

�
2n�2

�n
2

�
2n�2

POR(n, 1) 2n � 1 2n � 1

POPn 3 n/a

POP(n, r), 2  r  n� 1
�n
r

�
2n�r

�n
r

�
2n�r

POP(n, 1) 2n � 1 2n � 1

PODn n+ 1 n/a

POD(n, r), 2  r  n� 1
Pn

k=r

�n
k

��k�1
r�1

�
n/a

POD(n, 1) 2n � 1 2n � 1

POn 2n 3n� 1

PO(n, n� 1) 2n� 1 3n� 2

PO(n, r), 1  r  n� 2
Pn

k=r

�n
k

��k�1
r�1

� Pn
k=r

�n
k

��k�1
r�1

�

Now, we consider semigroups of full transformations and semigroups of injective partial transformations, respectively:

rank idrank

Tn 3 n/a

T (n, r), 2  r  n� 1 S(n, r) S(n, r)

T (n, 1) n n

ORn 3 n/a

OR(n, r), 3  r  n� 1
�n
r

�
n/a

OR(n, r), r = 1, 2
�n
r

� �n
r

�

OPn 2 n/a

OP(n, r), 1  r  n� 1
�n
r

� �n
r

�

ODn dn
2 e+ 1 n/a

OD(n, r), 2  r  n� 1
�n
r

�
n/a

OD(n, 1) n n

On n+ 1 2n� 1

O(n, n� 1) n 2n� 2

O(n, r), 1  r  n� 2
�n
r

� �n
r

�

rank

In 3

I(n, r), 3  r  n� 1
�n
r

�
+ 1

I(n, r), r = 1, 2
�n
r

�

PORIn 3

PORI(n, r), 3  r  n� 1
�n
r

�
+ 1

PORI(n, r), r = 1, 2
�n
r

�

POPIn 2

POPI(n, r), 1  r  n� 1
�n
r

�

PODIn dn
2 e+ 1

PODI(n, r), 1  r  n� 1
�n
r

�

POIn n+ 1

POI(n, r), 1  r  n� 1
�n
r

�

Remark

We would like to thank the anonymous referee for his/her helpful comments and suggestions that helped to improve this
paper and, in particular, for pointing out the deep work of Gray and Ruškuc on the rank of completely 0-simple semigroups
(see [26], [22], [21] and also [20]). After reduction to a principal factor, alternatively, we may use this general framework to
deduce our results. In the case of Theorems 1.4, 2.7 and 3.5 this other approach does not allow us to produce significantly
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shorter proofs. On the other hand, by contrast, the proof of Theorem 4.12 can be substantially reduced by replacing
Results 4.8-4.11 by a shorter deduction using Gray and Ruškuc work. Nevertheless, since we constructed explicit sets of
generators for the semigroups in question, which may be useful by themselves, we opted for keeping our original proof.
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da Caparica, 2829-516 Caparica, Portugal; also: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003

Lisboa, Portugal; e-mail: vhf@fct.unl.pt

1Corresponding author

13


