Publications

Export 84 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Maiti, B. K., T. Aviles, I. Moura, S. R. Pauleta, and JJG Moura. "Synthesis and characterization of [S2MoS2Cu(n-SPhF)](2-) (n = o, m, P) clusters: Potential F-19-NMR structural probes for Orange Protein." Inorg Chem Commun. 45 (2014): 97-100. AbstractWebsite

Three fluorinated Mo-Cu-thiolate isomers,[Ph4Ph[S2MoS2Cu(n-SPhF)], [n-SPhF = 2-fluorothiophenol (la)], 3-fluorothiophenol (lb), and 4-fluorothiophenol (1c)] were synthesized and spectroscopically characterized. The F-19-NMR signal of the fluorine atom in the.benzene has different chemical shift for each isomer, which is highly influenced by the local environment that can be manipulated by different solvents and solutes. The fluorine-19 chemical shift is an advantageous NMR structural probe in alternative to H-1-NMR [B.K. Maiti, T. Aviles, M. Matzapetakis, I. Moura, S.R. Pauleta, JJ.G. Moura, Eur. J. Inorg. Chem. (2012) 4159.], that can be used to provide local information on the pocket of the metal cluster in the Orange Protein (ORP). (C) 2014 Elsevier B.V. All rights reserved.

Maiti, B. K., T. Aviles, M. Matzapetakis, I. Moura, S. R. Pauleta, and JJG Moura. "Synthesis of MoS4 (2-)-M (M=Cu and Cd) Clusters: Potential NMR Spectroscopic Structural Probes for the Orange Protein." European Journal of Inorganic Chemistry (2012): 4159-4166. AbstractWebsite

Two synthetic strategies of tetrathiomolybdate-metal clusters with the potential to be used as NMR structural probes for the location of the metal cofactor in the orange protein (ORP) are described. The first strategy is based on the substitution reaction in which small organic ligands bind directly to the metal centre in a molybdenumcopper hetero-dinuclear cluster. Interaction between [PPh4]2[MoS4CuCl] and either aliphatic [beta-mercaptoethanol (b-me)] or aromatic [o-aminobenzenethiol (abt)] thiols in the presence of a strong base resulted in the formation of [Ph4P]2[S2MoS2Cu(b-me)] (1a) and [Et4N]2[S2MoS2Cu(abt)]center dot H2O center dot 0.25DMF (1b), which can be used to obtain intermolecular NOEs. The compound 1a readily hydrolyzed to [Ph4P]2[OSMoS2Cu(b-me)] (1ahydro) in contact with a protic solvent. The second strategy consisted of the incorporation of cadmium into tetrathiomolybdate ([MoS4]2), which gives rise to the trinuclear cluster compound [PPh4]2[(MoS4)2Cd] (2). All clusters were characterized spectroscopically and their structure determined by X-ray diffraction. The NMR spectroscopic data are consistent with the formation of a complex with a 1:1 ratio of {MoS4Cu} and thiol. The 113Cd NMR chemical shift of compound 2 is consistent with the cadmium having a tetrahedral geometry and coordinated by four sulfur ligands. The tetraphenylphosphonium cation in compound 1a was replaced by a tetramethylammonium countercation originating in the water-soluble compound [Me4N-1a]. Solubility in aqueous buffers is a requirement for incorporating this cluster into apo-ORP. These compounds will be used to identify the exact location of the ORP heterometallic cluster using NMR methodologies.

Dell'acqua, S., S. R. Pauleta, I. Moura, and JJG Moura. "The tetranuclear copper active site of nitrous oxide reductase: the CuZ center." Journal of Biological Inorganic Chemistry. 16 (2011): 183-194. AbstractWebsite

This review focuses on the novel CuZ center of nitrous oxide reductase, an important enzyme owing to the environmental significance of the reaction it catalyzes, reduction of nitrous oxide, and the unusual nature of its catalytic center, named CuZ. The structure of the CuZ center, the unique tetranuclear copper center found in this enzyme, opened a novel area of research in metallobiochemistry. In the last decade, there has been progress in defining the structure of the CuZ center, characterizing the mechanism of nitrous oxide reduction, and identifying intermediates of this reaction. In addition, the determination of the structure of the CuZ center allowed a structural interpretation of the spectroscopic data, which was supported by theoretical calculations. The current knowledge of the structure, function, and spectroscopic characterization of the CuZ center is described here. We would like to stress that although many questions have been answered, the CuZ center remains a scientific challenge, with many hypotheses still being formed.

Xie, X., R. G. Hadt, S. R. Pauleta, P. J. Gonzalez, S. Un, I. Moura, and E. I. Solomon. "A variable temperature spectroscopic study on Paracoccuspantotrophus pseudoazurin: protein constraints on the blue Cu site." J Inorg Biochem. 103 (2009): 1307-13. AbstractWebsite

The blue or Type 1 (T1) copper site of Paracoccuspantotrophus pseudoazurin exhibits significant absorption intensity in both the 450 and 600 nm regions. These are sigma and pi S(Cys) to Cu(2+) charge transfer (CT) transitions. The temperature dependent absorption, EPR, and resonance Raman (rR) vibrations enhanced by these bands indicate that a single species is present at all temperatures. This contrasts the temperature dependent behavior of the T1 center in nitrite reductase [S. Ghosh, X. Xie, A. Dey, Y. Sun, C. Scholes, E. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 4969-4974] which has a thioether ligand that is unconstrained by the protein. The lack of temperature dependence in the T1 site in pseudoazurin indicates the presence of a protein constraint similar to the blue Cu site in plastocyanin where the thioether ligand is constrained at 2.8 A. However, plastocyanin exhibits only pi CT. This spectral difference between pseudoazurin and plastocyanin reflects a coupled distortion of the site where the axial thioether in pseudoazurin is also constrained, but at a shorter Cu-S(Met) bond length. This leads to an increase in the Cu(2+)-S(Cys) bond length, and the site undergoes a partial tetragonal distortion in pseudoazurin. Thus, its ground state wavefunction has both sigma and pi character in the Cu(2+)-S(Cys) bond.

Nóbrega, C. S., B. Devreese, and S. R. Pauleta. "YhjA - An Escherichia coli trihemic enzyme with quinol peroxidase activity." Biochimica et Biophysica Acta - Bioenergetics. 1859.6 (2018): 411-422. AbstractWebsite
n/a
Miscellaneous
., Submitted. Abstract
n/a
Almeida, R. M., S. Dell'acqua, I. Moura, S. R. Pauleta, and JJG Moura CHAPTER 11: Electron Transfer and Molecular Recognition in Denitrification and Nitrate Dissimilatory Pathways. Eds. I. Moura, JJG Moura, L. B. Maia, C. D. Garner, and S. R. Pauleta. Vol. 2017-January. RSC Metallobiology, 2017-January. Royal Society of Chemistry, 2017. Abstract

The electron transfer pathways for the enzymes involved in the four sequential steps of the denitrification pathway are reviewed. In addition, brief information on the electron transfer events is also provided on two enzymes that participate in the dissimilatory nitrate reduction to ammonia. The two main aspects discussed are the intra- and inter-molecular electron transfer pathways and the molecular recognition processes involving the redox partners. When available, information on the residues that are involved in these pathways is given, and their role in electron transfer and/or the formation of the transient electron transfer complexes is discussed. © The Royal Society of Chemistry 2017.

Moura, I., L. B. Maia, S. R. Pauleta, and JJG Moura CHAPTER 1: A Bird's Eye View of Denitrification in Relation to the Nitrogen Cycle. Eds. I. Moura, JJG Moura, L. B. Maia, C. D. Garner, and S. R. Pauleta. Vol. 2017-January. RSC Metallobiology, 2017-January. Royal Society of Chemistry, 2017. Abstract

This book is devoted to denitrification, an anaerobic process that is used by a wide range of bacteria for energy generation. The overall process involves nitrate, which is present in soil or water, being reduced to gaseous dinitrogen. This initial chapter aims to place denitrification in the larger context of the nitrogen biogeochemical cycle (a bird's eye view). Detailed topics are developed through the many following contributions. Denitrification is a landscape for probing the structures, functions and mechanisms of action of a wide range of highly specialised metalloenzymes. These carry out, sequentially, four oxo-transfer reactions: NO3 - → NO2 - → NO → N2O → N2. The environmental implications of these processes are of particular relevance. Nitrate accumulation and the release of nitrous oxide into the atmosphere due to the excessive use of fertilisers in agriculture are examples of two environmental problems in which denitrification plays a central role. © The Royal Society of Chemistry 2017.

Pauleta, S. R., C. Carreira, and I. Moura CHAPTER 7: Insights into Nitrous Oxide Reductase. Eds. I. Moura, JJG Moura, L. B. Maia, C. D. Garner, and S. R. Pauleta. Vol. 2017-January. RSC Metallobiology, 2017-January. Royal Society of Chemistry, 2017. Abstract

Nitrous oxide reductase is the enzyme that catalyses the last step of the denitrification pathway, reducing nitrous oxide to dinitrogen gas. This enzyme is a functional homodimer with two copper centres, CuA and a "CuZ centre", located in different domains. The CuA centre is the electron transferring centre, while the catalytic centre is the "CuZ centre", a unique metal centre in biology - a tetranuclear copper centre with a μ4-bridging sulphide. The enzyme has been isolated with the "CuZ centre" in two different forms, CuZ(4Cu2S) and CuZ∗(4Cu1S), with the first presenting an additional μ2-sulphur atom as a bridging ligand between CuI and CuIV of the "CuZ centre", whereas the second form was identified as a water-derived molecule. Spectroscopic analysis of CuZ∗(4Cu1S), together with computational studies, indicated that there is a hydroxide bound to CuI. Genomic analysis has identified the presence of two different types of nitrous oxide reductase, the typical and "atypical", with a single member of the last group having been isolated to date, from Wolinella succinogenes. Thus, here the structure of the "typical" nitrous oxide reductase with either CuZ(4Cu2S) or CuZ∗(4Cu1S), as well as its spectroscopic and catalytic properties, will be discussed. © The Royal Society of Chemistry 2017.