Photomodulation of ultrastable host–guest complexes in water and their application in light-controlled steroid release

Citation:
Máximo, Patrícia, Miriam Colaço, Sofia R. Pauleta, Paulo J. Costa, Uwe Pischel, Jorge A. Parola, and Nuno Basílio. "Photomodulation of ultrastable host–guest complexes in water and their application in light-controlled steroid release." Organic Chemistry Frontiers. 9.16 (2022): 4238-4249.

Abstract:

The cucurbit[8]uril (CB8) synthetic receptor is shown to form high-affinity host–guest complexes with dicationic dithienylethene (DTE) photoswitches in water. ITC experiments combined with computational studies suggest that the formation of the inclusion complexes is mainly driven by a combination of hydrophobic effects, ion–dipole, hydrogen- and chalcogen-bonding interactions. The binding affinities were observed to be much higher for the DTE closed isomers, reaching values in the picomolar range (up to 1011 M−1) while the open isomers display up to 10 000-fold lower affinities, setting ideal conditions for the development of robust photoswitchable host–guest complexes. The light-responsive affinity of these photoswitches toward CB8 was explored to control the encapsulation and release of nanomolar affinity steroids via competitive guest replacement.

Notes:

n/a

Related External Link