CHAPTER 7: Insights into Nitrous Oxide Reductase

Citation:
Pauleta, S. R., C. Carreira, and I. Moura CHAPTER 7: Insights into Nitrous Oxide Reductase. Eds. I. Moura, JJG Moura, L. B. Maia, C. D. Garner, and S. R. Pauleta. Vol. 2017-January. RSC Metallobiology, 2017-January. Royal Society of Chemistry, 2017.

Abstract:

Nitrous oxide reductase is the enzyme that catalyses the last step of the denitrification pathway, reducing nitrous oxide to dinitrogen gas. This enzyme is a functional homodimer with two copper centres, CuA and a "CuZ centre", located in different domains. The CuA centre is the electron transferring centre, while the catalytic centre is the "CuZ centre", a unique metal centre in biology - a tetranuclear copper centre with a μ4-bridging sulphide. The enzyme has been isolated with the "CuZ centre" in two different forms, CuZ(4Cu2S) and CuZ∗(4Cu1S), with the first presenting an additional μ2-sulphur atom as a bridging ligand between CuI and CuIV of the "CuZ centre", whereas the second form was identified as a water-derived molecule. Spectroscopic analysis of CuZ∗(4Cu1S), together with computational studies, indicated that there is a hydroxide bound to CuI. Genomic analysis has identified the presence of two different types of nitrous oxide reductase, the typical and "atypical", with a single member of the last group having been isolated to date, from Wolinella succinogenes. Thus, here the structure of the "typical" nitrous oxide reductase with either CuZ(4Cu2S) or CuZ∗(4Cu1S), as well as its spectroscopic and catalytic properties, will be discussed. © The Royal Society of Chemistry 2017.

Notes:

Export Date: 31 January 2017

Related External Link