A variable temperature spectroscopic study on Paracoccuspantotrophus pseudoazurin: protein constraints on the blue Cu site

Citation:
Xie, X., R. G. Hadt, S. R. Pauleta, P. J. Gonzalez, S. Un, I. Moura, and E. I. Solomon. "A variable temperature spectroscopic study on Paracoccuspantotrophus pseudoazurin: protein constraints on the blue Cu site." J Inorg Biochem. 103 (2009): 1307-13.

Abstract:

The blue or Type 1 (T1) copper site of Paracoccuspantotrophus pseudoazurin exhibits significant absorption intensity in both the 450 and 600 nm regions. These are sigma and pi S(Cys) to Cu(2+) charge transfer (CT) transitions. The temperature dependent absorption, EPR, and resonance Raman (rR) vibrations enhanced by these bands indicate that a single species is present at all temperatures. This contrasts the temperature dependent behavior of the T1 center in nitrite reductase [S. Ghosh, X. Xie, A. Dey, Y. Sun, C. Scholes, E. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 4969-4974] which has a thioether ligand that is unconstrained by the protein. The lack of temperature dependence in the T1 site in pseudoazurin indicates the presence of a protein constraint similar to the blue Cu site in plastocyanin where the thioether ligand is constrained at 2.8 A. However, plastocyanin exhibits only pi CT. This spectral difference between pseudoazurin and plastocyanin reflects a coupled distortion of the site where the axial thioether in pseudoazurin is also constrained, but at a shorter Cu-S(Met) bond length. This leads to an increase in the Cu(2+)-S(Cys) bond length, and the site undergoes a partial tetragonal distortion in pseudoazurin. Thus, its ground state wavefunction has both sigma and pi character in the Cu(2+)-S(Cys) bond.

Notes:

Xie, XiangjinHadt, Ryan GPauleta, Sofia RGonzalez, Pablo JUn, SunMoura, IsabelSolomon, Edward IResearch Support, U.S. Gov't, Non-P.H.S.United StatesJournal of inorganic biochemistryJ Inorg Biochem. 2009 Oct;103(10):1307-13. doi: 10.1016/j.jinorgbio.2009.04.012. Epub 2009 May 7.

Related External Link