Publications

Export 36 results:
Sort by: Author Title Type [ Year  (Desc)]
2000
Fortunate, E.a, Ferreira Giuliani Wurmsdobler Martins I. a F. a. "New ultra-light flexible large area thin film position sensitive detector based on amorphous silicon." Journal of Non-Crystalline Solids. 266-269 B (2000): 1213-1217. AbstractWebsite

In this paper we report on large area one dimensional (1D) amorphous silicon position sensors deposited on flexible polymer foil substrate. The pin sensor structure was deposited by rf plasma enhanced chemical vapour deposition (PECVD). For the electrical and optical characterisation the sensors have been mounted on a convex holder with a 14-mm radius-of-curvature, since the main goal of this work is to develop a flexible position sensor to be incorporated in a micromotor in order to measure its angular velocity continuously. The obtained sensors present adequate performances concerning the position non-linearity (±1% in 20 mm length), comparable to those fabricated on glass substrates. © 2000 Elsevier Science B.V. All rights reserved.

1999
Ferreira, I., Fernandas Martins B. R. "Nanocrystalline silicon carbon doped films prepared by hot wire technique." Vacuum. 52 (1999): 147-152. AbstractWebsite

In this work we present data concerning the structure, composition and electro-optical performances of nanocrystalline silicon carbide doped films produced at the different filament temperatures and hydrogen dilution ratios. The XRD spectra reveal the presence of the typical Si peaks ascribed to (111) (220) and (311) diffraction planes, where no traces of the carbon peaks were found. The average grain sizes ranges from 10 nm to 30 nm, depending on the temperature of filament and hydrogen dilution used. We observed an enhancement of the peak ascribed to the (220) plane when high H dilution rates are used, meaning that the film starts being textured. The infrared data reveal the typical silicon carbide modes and a hydrogen content that varies from 3% to 1%, with the increase of the filament temperature. Besides that, the IR spectra show the typical SiO2 and SiO modes, associated to the oxide species that are mainly incorporated in the surface of the films and can be removed by proper wet etching. The planar conductivity is enhanced as the temperature of the filament is increased, being the highest conductivity achieved in the range of 0.2 (Ωcm)-1 and almost non activated. © 1998 Elsevier Science Ltd. All rights reserved.

Gonçalves, C.a, Ferreira Fortunato Ferreira Martins Marvão Martins Harder Oppelt J. a E. a. "New metallurgical systems for electronic soldering applications." Sensors and Actuators, A: Physical. 74 (1999): 70-76. AbstractWebsite

The aim of this paper is to present results on a new soldering process based on the low-temperature solidification of intermetallic phases from the system Cu-Sn-Cu which can be employed to form a heat-resistant die-attach as well as signal and power electric contacts. Because of the total transformation into intermetallic phase, the working temperature of the bond formed is several hundred degrees Celsius higher than the process temperature (around 250°C). This process leads to a homologous temperature T/Tm of about 0.3 compared to 0.7 in the case of soft SnAg solder alloy. Therefore a better reliability of the proposed bonding process is achievable. Results of the match of the predicted volume fraction of the intermetallic forms and the experimentally measured contact volume would be also discussed, for contacts formed in power diodes.

1998
Malik, A.a, Sêco Fortunato Martins Shabashkevich Piroszenko A. a E. a. "A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis." Semiconductor Science and Technology. 13 (1998): 102-107. AbstractWebsite

A new high quantum efficiency gallium phosphide Schottky photodiode has been developed by spray deposition of heavily doped tin oxide films on n-type epitaxial structures, as an alternative to the conventional Schottky photodiodes using a semitransparent gold electrode. It is shown that fluorine-doped tin oxide films are more effective as transparent electrodes than tin-doped indium oxide films. The proposed photodiodes have a typical responsivity near 0.33 A W-1 at 440 nm and an unbiased internal quantum efficiency close to 100%, in the range from 250 to 450 nm. The model used to calculate the internal quantum efficiency (based on the optical constants of tin oxide films and gallium phosphide epitaxial layers) is found to be in good agreement with the experimental results. The data show that the quantum efficiency is strongly dependent on the thickness of the transparent electrode, owing to optical interference effects. The noise equivalent power for 440 nm is 2.7 × 10-15 W Hz-1/2, which indicates that these photodiodes can be used for accurate measurements in the short-wavelength range, even in the presence of stronger infrared background radiation.

Fortunato, E., Martins R. "New materials for large-area position-sensitive detectors." Sensors and Actuators, A: Physical. 68 (1998): 244-248. AbstractWebsite

Large-area thin-film position-sensitive detectors (TFPSDs) using the hydrogenated amorphous silicon (a-Si:H) technology are presented. The detection accuracy of these devices (lengths of about 80 mm) is better than ±0.5% of the value of the full scale of the sensor, the spatial resolution is better than ±20 μm, the non-linearities measured are below ±2% and the frequency response is in the range of a few kilohertz, compatible with the sampling frequency of most electromechanical assembling/control systems. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems. © 1998 Elsevier Science S.A. All rights reserved.

Fortunato, Elvira, Martins Rodrigo. "New materials for large-area position-sensitive detectors." Sensors and Actuators, A: Physical. 68 (1998): 244-248. AbstractWebsite

Large-area thin-film position-sensitive detectors (TFPSDs) using the hydrogenated amorphous silicon (a-Si:H) technology are presented. The detection accuracy of these devices (lengths of about 80 mm) is better than ±0.5% of the value of the full scale of the sensor, the spatial resolution is better than ±20 μm, the non-linearities measured are below ±2% and the frequency response is in the range of a few kilohertz, compatible with the sampling frequency of most electromechanical assembling/control systems. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems.

Malik, A.a, Sêco Fortunato Martins A. b E. a. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, A., Seco Fortunate Martins A. E. R. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications.

1997
Fantoni, A., Vieira Cruz Martins M. J. R. "Numerical simulation of a/μc-Si:H p-i-n photo-diode under non-uniform illumination: A 2D transport problem." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 2997. 1997. 234-243. Abstract

We report here about a computer simulation program, based on a comprehensive physical and numerical model of an a/μc-Si:H p-i-n device, applied to the 2D problem of describing the transport properties within the structure under non- uniform illumination. The continuity equations for holes and electrons together with Poisson's equation are solved simultaneously along the two directions parallel and perpendicular to the junction. The basic semiconductor equations are implemented with a recombination mechanism reflecting the microcrystalline structure of the different layers. The lateral effects occurring within the structure, due to the non-uniformity of the radiation are outlined. The simulation results obtained for different wavelengths of the incident light are compared and shown their dependence on the energy of the radiation. The results of simulating a p-i-n μc-Si:H junctions under non-uniform illumination is that the generated lateral effects depend not only in intensity but also in direction on the wavelength of the incident radiation. ©2004 Copyright SPIE - The International Society for Optical Engineering.

1995
Carvalho, J., Ferreira Fernandes Fidalgo Martins I. B. J. "Nd-YAG laser induced crystallization on a-Si:H thin films." Materials Research Society Symposium - Proceedings. Vol. 358. 1995. 915-920. Abstract

In this paper we present results concerning the influence of laser energy and shot density on the electrical resistance, X-ray diffraction pattern, and structure obtained by SEM, on recrystallized a-Si:H thin films produced by using a Nd-YAG laser, working in a wavelength of 532 nm. The base material (undoped and doped a-Si:H) was obtained by Plasma Enhanced Chemical Vapour Deposition (PECVD). The structure and electrical characteristics of the recrystallized thin films are dependent on the laser beam energy density, beam spot size and the number of shots applied to the base a-Si:H thin film used. Overall, the data show recrystallized material with grain sizes larger than 1μm, where the electrical resistance of both, undoped and doped materials, can be varied up to 5 orders of magnitude, by the proper choice of the recrystallization conditions.

Fortunato, E., Soares Lavareda Martins F. G. R. "New linear array thin film position sensitive detector (LTFPSD) for 3D measurements." Materials Research Society Symposium - Proceedings. Vol. 377. 1995. 797-802. Abstract

A Linear array Thin Film Position Sensitive Detector (LTFPSD) based on hydrogenated amorphous silicon (a-Si:H) is proposed for the first time, taking advantage of the optical properties presented by a-Si:H devices we have developed a LTFPSD with 128 integrated elements able to be used in 3D inspections/measurements. Each element consists on an one-dimensional TFPSD, based on a p.i.n. diode produced in a conventional PECVD system, where the doped layers are coated with thin resistive layers to establish the required device equipotentials. By proper incorporation of the LTFPSD into an optical inspection camera it will be possible to acquire information about an object/surface, through the optical cross-section method. The main advantages of this system, when compared with the conventional CCDs, are the low complexity of hardware and software used and that the information can be continuously processed (analogue detection).