Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells

Citation:
Hu, Z.a b c, Liao Diao Cai Zhang Fortunato Martins X. a H. a. "Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells." Journal of Non-Crystalline Solids. 352 (2006): 1900-1903.

Abstract:

A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm-1) from crystalline Si peak (521 cm-1) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a Voc of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. © 2006 Elsevier B.V. All rights reserved.

Notes:

cited By 30

Related External Link