Publications

Export 9 results:
Sort by: Author Title [ Type  (Asc)] Year
Conference Paper
Elisa, M. a, B. A. a Sava, I. C. a Vasiliu, R. C. C. b Monteiro, C. R. a Iordanescu, I. D. a Feraru, L. a Ghervase, C. c Tanaselia, M. c Senila, and B. c Abraham. "Investigations on optical, structural and thermal properties of phosphate glasses containing terbium ions." IOP Conference Series: Materials Science and Engineering. Vol. 47. 2013. Abstract

{Aluminophosphate glasses belonging to the Li2O-BaO-Al 2O3- La2O3-P2O 5 system doped with Tb3+ were prepared and investigated. Methods as Induced Coupled Plasma-Mass Spectrometry (ICP-MS), Induced Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and X-ray diffraction (XRD) have been used to establish the elemental composition of these vitreous materials. The influence of the Tb3+ ions on the optical properties of the phosphate glasses has been investigated in relation with the structural characteristics of the vitreous matrix. The optical behavior has been studied by ultra-violet-visible (UV-Vis) spectroscopy, revealing electronic transitions specific for terbium ions. Fluorescence spectroscopy measurements have been performed by excitation in the UV and visible domains (377 nm and 488 nm) which resulted in the most significant fluorescence peaks in the Vis domain (540 and 547 nm). Structural information via vibration modes were provided by Fourier Transform Infrared (FTIR) absorption spectra in the 400-4000 cm-1 range. Absorption peaks specific for the vitreous phosphate matrix were put in evidence as P-O-P symmetrical and asymmetrical stretching vibration modes, P-O-P bend, PO2- symmetrical and asymmetrical stretching vibration modes

Journal Article
Soares, R. S. a, R. C. C. a Monteiro, A. A. S. a Lopes, M. M. R. A. a Lima, B. A. b Sava, and M. b Elisa. "Crystallization and microstructure of Eu3 +-doped lithium aluminophosphate glass." Journal of Non-Crystalline Solids. 403 (2014): 9-17. AbstractWebsite

A transparent Eu3 +-doped lithium aluminophosphate glass was prepared by melt-quenching technique. The thermal behavior of the glass was investigated by differential thermal analysis (DTA), the structure was studied by X-ray diffraction (XRD) and the morphology was observed by optical polarization microscopy and scanning electron microscopy (SEM). The activation energy of glass transition and the activation energy of crystallization and Avrami exponent have been evaluated under non-isothermal conditions from the data obtained by DTA at different heating rates. DTA curves exhibited an endothermic peak associated with the glass transition and two exothermic peaks. The mean value calculated for the activation energy of glass transition was 545 kJ mol- 1. The activation energy of crystallization was   400 kJ mol- 1 for the first exothermic peak and   170 kJ mol- 1 for the second peak. The Avrami exponent was   1 for both peaks indicating surface crystallization. XRD results showed that the main crystalline phase, aluminum metaphosphate, Al(PO3)3, and aluminum phosphate, AlPO4, were formed together with lithium barium phosphate, Li 3Ba(PO3)7, during the first exothermic peak and together with barium pyrophosphate, Ba2P2O7, during the second peak. Morphological study of heat-treated glass samples revealed microstructural features that confirmed a surface crystallization process. © 2014 Elsevier B.V.

Nico, C. a, M. P. F. a Graça, M. b Elisa, B. A. b Sava, R. C. C. c Monteiro, L. a Rino, and T. a Monteiro. "Effects of ultraviolet excitation on the spectroscopic properties of Sm3+ and Tb3+ doped aluminophosphate glasses." Optical Materials. 35 (2013): 2382-2388. AbstractWebsite

Li2O-BaO-Al2O3-La2O 3-P2O5 glasses optically activated with rare earth ions with the 4f5, and 4f8 electronic configuration (Sm3+ and Tb3+, respectively) were analyzed by Raman spectroscopy, absorption, excitation photoluminescence, decay curves and temperature dependent photoluminescence. The spectroscopic characteristics of the as-prepared and heat treated samples at temperatures below and above T g were studied as well as their room temperature photometric properties under ultraviolet excitation. All the doped glasses exhibit typical signatures of the lanthanides in their trivalent charge state. For the samarium doped glass heat treated at 250 C (<Tg) the Sm2+ luminescence was also observed. The analysis of the luminescence efficiency was performed in the interval range of 14 K to room temperature, where the integrated intensity of the luminescence was found to decrease for the Sm 3+ and Tb3+ ions in the studied temperature range. Luminescence decay curves were found to be non-exponential for the 4G5/2 → 6H7/2 and 5D3 → 7F4 transitions of the Sm3+ and Tb3+ ions, respectively. The results strongly suggest the occurrence of energy transfer processes through cross relaxation phenomena, mediated by dipole-dipole interaction in all the studied samples. The decay of the 5D4 → 7F5 emission of the Tb3+ ions was found to be single exponential with a time constant of ∼3.1 ms. Based on the spectroscopic characteristics, models for recombination processes are proposed. The room temperature luminance photometric properties with ultraviolet excitation show that the samarium doped glasses have much lower luminance intensity (around 0.3 Cd/m2) when compared with the 6-7 Cd/m2 observed for the terbium doped ones. © 2013 Elsevier B.V. All rights reserved.

Nico, C. a, R. a Fernandes, M. P. F. a Graça, M. a Elisa, B. A. b Sava, R. C. C. c Monteiro, L. a Rino, and T. a Monteiro. "Erratum: Eu3+ luminescence in aluminophosphate glasses (Journal of Luminescence (2014) 145 (582-587))." Journal of Luminescence. 161 (2015): 465. AbstractWebsite
n/a
Nico, C. a, R. a Fernandes, M. P. F. a Graça, M. b Elisa, B. A. b Sava, R. C. C. c Monteiro, L. a Rino, and T. a Monteiro. "Eu3+ luminescence in aluminophosphate glasses." Journal of Luminescence. 145 (2014): 582-587. AbstractWebsite

With a 4f6 electronic configuration, europium ions in the trivalent charge state are known to be efficient activators in wide band gap matrices. Embedded in the aluminophosphate (Li2O-BaO-Al 2O3-La2O3-P2O 5) glasses the optically activated Eu3+ ions lead to intense room temperature orange/red luminescence with 16-23 Cd/m2 by using ultraviolet pumping. The as-prepared and heat treated europium doped glasses for temperatures below and above Tg were studied by room temperature Raman spectroscopy, absorption, photoluminescence excitation, temperature dependent and time dependent photoluminescence. When the samples are excited by 325 nm wavelength photons, an enhancement of the red luminescence intensity by ca. one order of magnitude was found to occur for temperatures between 14 K and 350 K, for all the doped glasses. On the other hand, by using resonant excitation on the 5L6 Eu3+ excited state (λexc 390 nm) the ion emission intensity was found to be nearly constant for temperatures up to 500 K. For higher temperatures a steeper decrease of the luminescence intensity occurs due to non-radiative competitive channels described by activation energies of ca. 235 meV and 450 meV by using 325 and 390 nm wavelength photons as excitation, respectively. The lifetime of the 5D0 level in these glasses is ca. 2.93 ms. A discussion of the thermal population and de-excitation mechanisms is performed. © 2013 Elsevier B.V.

Elisa, M. a, B. A. a Sava, I. C. a Vasiliu, R. C. C. b Monteiro, J. P. B. Veiga, L. a Ghervase, I. a Feraru, and R. a Iordanescu. "Optical and structural characterization of samarium and europium-doped phosphate glasses." Journal of Non-Crystalline Solids. 369 (2013): 55-60. AbstractWebsite

The work deals with optical and structural properties of aluminophosphate glasses from Li2O-BaO-Al2O3-La 2O3-P2O5 system containing Sm 3 + and Eu3 + ions. X-ray fluorescence (XRF) has been used to establish the elemental composition of these materials. The influence of Sm3 + and Eu3 + ions on the optical properties of these glasses has been investigated in relation with their structural characteristics. The optical behavior of these materials has been studied by ultra-violet-visible (UV-Vis) spectroscopy, revealing absorption maxima specific to the doping ions. Structural information via vibration modes was provided by Fourier Transform Infrared (FTIR) absorption spectra evidenced as POP symmetrical and asymmetrical stretching vibration modes, POP bend, PO 2- symmetrical and asymmetrical stretching vibration modes, PO stretching vibration mode and POH water absorbance. Raman spectra acquired by 514.5 nm laser excitation disclosed peaks specific to metaphosphate network. Information about the elemental compositional homogeneity of Sm 3 + and Eu3 +-containing glasses as well as about the defects of the doped-glasses is revealed by scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). Fluorescence spectroscopy measurements put in evidence important fluorescence peaks found at 596 nm and 643 nm for Sm 3 + ions in phosphate matrix and 611 nm and 700 nm in the case of Eu3 +-doped glass. © 2013 Elsevier B.V.

Soares, R. S. a, R. C. C. a Monteiro, M. M. R. A. a Lima, B. A. b Sava, and M. b Elisa. "Phase transformation and microstructural evolution after heat treatment of a terbium-doped lithium-aluminum phosphate glass." Journal of Materials Science. 49 (2014): 4601-4611. AbstractWebsite

The crystallization kinetics and phase transformation of a transparent Tb3+-doped lithium-aluminum phosphate glass, prepared by melt quenching, were investigated. The energy associated to the glass transition and the crystallization parameters (activation energy for crystallization and Avrami exponent) were evaluated by different methods using the experimental data obtained by differential thermal analysis performed at different heating rates. Using an isoconversional method to determine the change of the activation energy for crystallization with the fraction of crystallization, it was verified that with the increase in the fraction of crystallization from 0.1 to 0.9, the value of the activation energy decreased slightly from  370 to  310 kJ mol -1 and that the Avrami exponent varied from 0.8 to 1, suggesting a surface crystal growth mechanism. Observation of the microstructural evolution of heat-treated glass samples confirmed a surface crystallization process revealing spherulitic crystals constituted mainly by aluminum metaphosphate. © 2014 Springer Science+Business Media New York.

Sava, B. A. a, M. a Elisa, L. b Boroica, and R. C. C. c Monteiro. "Preparation method and thermal properties of samarium and europium-doped alumino-phosphate glasses." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 178 (2013): 1429-1435. AbstractWebsite

The present work investigates alumino-phosphate glasses from Li 2O-BaO-Al2O3-La2O3-P 2O5 system containing Sm3+ and Eu3+ ions, prepared by two different ways: a wet raw materials mixing route followed by evaporation and melt-quenching, and by remelting of shards. The linear thermal expansion coefficient measured by dilatometry is identical for both rare-earth-doped phosphate glasses. Comparatively to undoped phosphate glass the linear thermal expansion coefficient increases with 2 × 10-7 K-1 when dopants are added. The characteristic temperatures very slowly decrease but can be considered constant with atomic weight, atomic number and f electrons number of the doping ions in the case of Tg (vitreous transition temperature) and Tsr (high annealing temperature) but slowly increase in the case of Tir (low annealing temperature-strain point) and very slowly increase, being practically constant in the case of TD (dilatometric softening temperature). Comparatively to undoped phosphate glass the characteristic temperatures of Sm and Eu-doped glasses present lower values. The higher values of electrical conductance for both doped glasses, comparatively to usual soda-lime-silicate glass, indicate a slightly reduced stability against water. The viscosity measurements, showed a quasi-linear variation with temperature the mean square deviation (R 2) being ranged between 0.872% and 0.996%. The viscosity of doped glasses comparatively to the undoped one is lower at the same temperature. Thermogravimetric analysis did not show notable mass change for any of doped samples. DSC curves for both rare-earth-doped phosphate glasses, as bulk and powdered samples, showed Tg values in the range 435-450 C. Bulk samples exhibited a very weak exothermic peak at about 685 C, while powdered samples showed two weak exothermic peaks at about 555 C and 685 C due to devitrification of the glasses. Using designed melting and annealing programs, the doped glasses were improved regarding bubbles and cords content and strain elimination. © 2013 Elsevier B.V. All rights reserved.

Elisa, M. a, B. A. b Sava, A. c Volceanov, R. C. C. d Monteiro, E. e Alves, N. e Franco, F. A. f Costa Oliveira, H. g Fernandes, and M. C. g Ferro. "Structural and thermal characterization of SiO2-P2O5 sol-gel powders upon annealing at high temperatures." Journal of Non-Crystalline Solids. 356 (2010): 495-501. AbstractWebsite

This study deals with SiO2-P2O5 powders obtained by sol-gel process, starting from tetraethoxysilane (TEOS) as precursor for SiO2 and either triethylphosphate (TEP) or phosphoric acid (H3PO4) as precursors for P2O5. In the case of samples prepared with H3PO4, TG-DTA data showed an accentuated weight loss associated to an endothermic effect up to about 140 °C, specific for the evaporation of water and ethylic alcohol from structural pores, and also due to alkyl-amines evaporation. Sol-gel samples prepared with TEP exhibited different thermal effects, depending on the type of atmosphere used in the experiments, i.e. argon or air. XRD analysis revealed that annealed sol-gel samples prepared with H3PO4 showed specific peaks for silicophosphate compounds such as Si3(PO4)4, Si2P2O9, and SiP2O7. XRD results for annealed sol-gel samples prepared with TEP indicated mainly the presence of a vitreous (amorphous) phase, which could be correlated with SEM images. The presence of SiO2 in the sample might be expected. Thus, we have searched for any SiO2 polymorph possible to crystallize. Only potential peaks of cristobalite were identified but some of them are overlapping with peaks of other crystalline phosphates. SEM analysis indicated a decrease of the amount of crystalline phases with the increase in the annealing temperature. © 2009 Elsevier B.V. All rights reserved.