Wojcik, P.J., Pereira Martins Fortunato L. R. E. Metal oxide nanoparticle engineering for printed electrochemical applications. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques., 2016.
AbstractEngineering procedures governing the selection or development of printable nanostructured metal oxide nanoparticles for chromic, photovoltaic, photocatalytic, sensing, electrolyte-gated TFTs, and power storage applications are established in this chapter. The main focus is given on how to perform the material selection and formulation of printable dispersion in order to develop functional films for electrochemical applications. This chapter is divided into four main parts. Firstly, a brief introduction on electrochemically active nanocrystalline metal oxide films developed via printing techniques is given. This is followed by the description of the film morphology, structure, and required functionality. A theoretical approach to understand the impact of size and shape of nanoparticles on an ink formulation and electrochemical performance being the subject of the third section provides a greater control over the material selection. We attempt to describe these properties and show that for a given material, geometry and size of the nanoparticles have a major influence on the electrochemical reactivity and response time. This gives the ability to tune the performance of the film simply by varying the morphology of incorporated nanostructures. This section is completed by the recommendations on each major step of an ink formulation, together with imposed critical constraints concerning the fluid control. Finally, the performance of the ink-jetprinted dual-phase electrochromic films is discussed as a case study. By providing such a rather systematic survey, we aim to stress the importance of proper design strategy that would result in both improved physicochemical properties of nanoparticle-loaded inks and enhanced electrochemical performance of printed functional films. © Springer International Publishing Switzerland 2016.
Myers, TS, O. Mateus, M. J. Polcyn, D. Vineyard, and LL Jacobs A new chelonioid turtle from the Paleocene of Cabinda, Angola. Journal of Vertebrate Paleontology, Program and Abstracts, 2016, p. 194., 2016.
AbstractWe report a new chelonioid turtle on the basis of a nearly complete skull collected in lower Paleocene, shallow marine deposits, equivalent to the offshore Landana Formation, near the town of Landana in Cabinda Province, Angola. Chelonioid material previously reported from this locality is likely referable to this new taxon. The well-preserved skull is missing the left quadrate, squamosal, and prootic, both opisthotics, and the mandible. The skull possesses a rod-like basisphenoid rostrum, which is a synapomorphy of Chelonioidea, but it differs from other chelonioid skulls in that the contact between the parietal and squamosal is absent, and the posterior palatine foramen is present. Phylogenetic analysis recovers the new taxon as a basal chelonioid. The Paleocene– Eocene strata near Landana have produced a wealth of turtle fossils, including the holotype of the pleurodire Taphrosphys congolensis. A turtle humerus collected from the Landana locality differs morphologically from the humeri of chelonioids and Taphrosphys, indicating the presence of a third taxon. Chelonioid fossil material in the Landana assemblage is rare compared to the abundant fragmentary remains of Taphrosphys that are found throughout the stratigraphic section. This disparity in abundance suggests the new chelonioid taxon preferred open marine habitats, whereas Taphrosphys frequented nearshore environments.
Bahubalindruni, P.G.a c, Tavares Fortunato Martins Barquinha V. G. b E. "
Novel linear analog-adder using a-IGZO TFTs."
Proceedings - IEEE International Symposium on Circuits and Systems. Vol. 2016-July. 2016. 2098-2101.
AbstractA novel linear analog adder is proposed only with n-type enhancement IGZO TFTs that computes summation of four voltage signals. However, this design can be easily extended to perform summation of higher number of signals, just by adding a single TFT for each additional signal in the input block. The circuit needs few number of transistors, only a single power supply irrespective of the number of voltage signals to be added, and offers good accuracy over a reasonable range of input values. The circuit was fabricated on glass substrate with the annealing temperature not exceeding 200° C. The circuit performance is characterized from measurements under normal ambient at room temperature, with a power supply voltage of 12 V and a load of ≈ 4 pF. The designed circuit has shown a linearity error of 2.3% (until input signal peak to peak value is 2 V), a power consumption of 78 μW and a bandwidth of ≈ 115 kHz, under the worst case condition (when it is adding four signals with the same frequency). In this test setup, it has been noticed that the second harmonic is 32 dB below the fundamental frequency component. This circuit could offer an economic alternative to the conventional approaches, being an important contribution to increase the functionality of large area flexible electronics. © 2016 IEEE.
Biscaia, Hugo, Noel Franco, Ricardo Nunes, and Carlos Chastre. "
Old suspended timber floors flexurally-strengthened with different structural materials."
15th International Conference on Fracture and Damage Mechanics. Ed. Andrés Sáez Ferri Aliabadi M. H. Jesús Toribio, Vladislav Mantič. Alicante, Spain 2016.
AbstractThe design of timber beams has strict limits when it comes to the Serviceability Limit States (SLS) either in short-term or in long-term deflections. In order to face this aspect efficiently, the increase of the cross section of the beams might be considered as a solution. However, the prohibitive increase of the costs associated to this solution or the change of the initial architecturedesign of the building, opens the opportunity to find new and more efficient solutions. In that way, the use of additional reinforcements to the timber beams may be seen as a promising solution because either new or old structures would keep always their original aesthetical aspect with no significant self-weight increase and improving their behaviour to short and long-term actions.Therefore, the current study is dedicated to the analysis of composite timber beams where Fiber Reinforcement Polymers (FRP), steel or stainless steel are used to improve the stiffness, strength and deflection behaviour of old suspended timber floors. An experimental program was conducted where old suspended timber floors reinforced with CFRP strips were subjected to 4-point bending tests. A simplify nonlinear numerical model was developed to simulate the bending behaviour of the specimens and several other cases with other reinforcement configurations and different structural materials were assumed. The numerical analysis herein presented also takes into account both Ultimate and Serviceability Limit States of the reinforced specimens.