Araújo, A., Mendes Mateus Vicente Nunes Calmeiro Fortunato Águas Martins M. J. T. "
Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing."
Journal of Physical Chemistry C. 120 (2016): 18235-18242.
AbstractMetal nanoparticles are of great interest for light trapping in photovoltaics. They are usually incorporated in the rear electrode of solar cells, providing strong light scattering at their surface plasmon resonances. In most cases, the nanoparticles are self-assembled by solid-state dewetting over a transparent conductive oxide (TCO) layer incorporated in the cell's rear electrode. Up to now, this process has been optimized mainly by tuning the thermal annealing parameters responsible for dewetting, or the thickness of the precursor metallic layer; but little attention has been paid to the influence of the underlying TCO layer properties on the morphology of the nanoparticles formed, which is the focus of the present article. This work investigates Ag nanoparticles structures produced on distinct surfaces by a simple, fast and highly reproducible method employing rapid thermal annealing. The results indicate that both the thermal conductivity and surface roughness of the TCO layer play a determinant role on the morphology of the nanostructures formed. This is of particular relevance, since we show in the study performed that the parasitic absorption of these Ag nanostructures is reduced, while the scattering is enhanced when the Ag nanostructures are formed on TCO layers with the highest conductivity and the lowest surface roughness (∼1 nm). These results unveil novel possibilities for the improvement of plasmonic nanostructures fabricated by thermal dewetting, via the careful adjustment of the physical properties of the underlying surface. © 2016 American Chemical Society.
Mateus, O. Late Jurassic of Morrison Formation and Portugal tetrapods compared: a model to explain faunal exchange and similarity. Annual Meeting of the Society of Vertebrate Paleontology. Salt Late City: Journal of Vertebrate Paleontology, Program and Abstracts, 2016, 2016.
AbstractThe precursor of the North Atlantic existed between the North American and Iberian blocks from the earliest Jurassic Hettangian and has been ever expanding since. By the Kimmeridgian and Tithonian, when much of the Morrison Fm rocks were deposited, the proto-Atlantic was more than 300 km wide at 27° paleolatitude between North America and Iberia. Macrovertebrate paleontology reveals a unique story to the isolation of Iberia and instead suggest a paleogeographic land connection between North American and Iberia. Torvosaurus, Allosaurus, Ceratosaurus, Stegosaurus, Supersaurus and others have a distribution restricted to Morrison Formation in North America and Lourinhã Formation in Portugal. A novel paleogeographic model is here suggested: (1) around the Middle–Late Jurassic transition there is a major palaeoceanographic and palaeoclimatic reorganization, coincidental to a major eustatic sea-level drop and uplift associated with the Callovian– Oxfordian Atlantic Regressive Event; (2) creating an ephemeral land bridge presenting a temporary opportunity for terrestrial gateways likely across the Flemish Cap and Galician Bank land masses, allowing large dinosaurian taxa to cross the northern proto-Atlantic in both directions; (3) finally, a Callovian–Oxfordian faunal exchange around the 163 Ma, through latest Kimmeridgian at 152 Ma (the age of equivalent genera in both Morrison and Portugal), is was an interval that allowed speciation, but retaining generic similarity of vertebrates. This model is consistent with the chronology and taxonomy required for speciation of the Iberian and American forms, exemplified by the coeval sister-taxa pairs Torvosaurus tanneri and T. gurneyi, Allosaurus fragilis and A. europaeus, or Supersaurus vivianae and S. lourinhanensis. While some of the smaller animals in the fauna show Morrison/Portugal affinities, most from Iberia have European or even Asian affinities. The larger-bodied fauna are more closely related to Morrison than to mainland Europe (except for dacentrurine stegosaurs). The body size differences and affinities of taxa across paleogeography is comparable to what is observed today across the Wallace Line. Migration may have also occurred in both directions. The closest relative of Torvosaurus is likely the European Bathonian Megalosaurus, thus the presence of the genus in North America represents a European migration. On other hand, Allosaurus and Supersaurus origins are consistent with a North American origin, representing an westto-east migration.
Wojcik, P.J., Pereira Martins Fortunato L. R. E. Metal oxide nanoparticle engineering for printed electrochemical applications. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques., 2016.
AbstractEngineering procedures governing the selection or development of printable nanostructured metal oxide nanoparticles for chromic, photovoltaic, photocatalytic, sensing, electrolyte-gated TFTs, and power storage applications are established in this chapter. The main focus is given on how to perform the material selection and formulation of printable dispersion in order to develop functional films for electrochemical applications. This chapter is divided into four main parts. Firstly, a brief introduction on electrochemically active nanocrystalline metal oxide films developed via printing techniques is given. This is followed by the description of the film morphology, structure, and required functionality. A theoretical approach to understand the impact of size and shape of nanoparticles on an ink formulation and electrochemical performance being the subject of the third section provides a greater control over the material selection. We attempt to describe these properties and show that for a given material, geometry and size of the nanoparticles have a major influence on the electrochemical reactivity and response time. This gives the ability to tune the performance of the film simply by varying the morphology of incorporated nanostructures. This section is completed by the recommendations on each major step of an ink formulation, together with imposed critical constraints concerning the fluid control. Finally, the performance of the ink-jetprinted dual-phase electrochromic films is discussed as a case study. By providing such a rather systematic survey, we aim to stress the importance of proper design strategy that would result in both improved physicochemical properties of nanoparticle-loaded inks and enhanced electrochemical performance of printed functional films. © Springer International Publishing Switzerland 2016.