Amaral, P., and P. Barahona. "
On Optimal Correction of Inconsistent Linear Constraints."
Principles and Practice of Constraint Programming, CP'2002. Ed. Pascal Van Hentenryck. Vol. 2470. Lecture Notes in Computer Science, 2470. Springer, 2002. 33-46.
AbstractIn practice one has often to deal with the problem of inconsistency between constraints, as the result, among others, of the comple\-xi\-ty of real models. To overcome these conflicts we can outline two major \mbox{actions}: removal of constraints or changes in the coefficients of the model. This last approach, that can be generically described as ``model corre\-ction" is the problem we address in this paper. The correction of the right hand side alone was one of the first approaches. The correction of both the matrix of coefficients and the right hand side introduces non linearity in the constraints. The degree of difficulty in solving the problem of the optimal correction depends on the objective function, whose purpose is to measure the closeness between the original and corrected model. Contrary to other norms, the optimization of the important Frobenius was still an open problem. We have analyzed the problem using the KKT conditions and derived necessary and sufficient conditions which enabled us to unequivocally characterize local optima, in terms of the solution of the Total Least Squares and the set of active constraints. These conditions justify a set of pruning rules, which proved, in preliminary experimental results, quite successful in a tree search procedure for determining the global minimizer.
Kholkin, A.L., Iakovlev Fortunato Martins Ferreira Shvartsman Baptista S. E. R. "
Optical and photoelectric properties of PZT films for microelectronic applications."
Key Engineering Materials. 230-232 (2002): 563-566.
AbstractPbZrxTi1-xO3 (PZT) films are currently being investigated in view of their large switching polarization and piezoelectric coefficients useful for various applications. Besides, PZT films possess large photosensitivity, which, in combination with the above listed properties, can be a base for future microelectronic applications including photostrictive actuators and optical storage devices. In this work, PZT thin films of several compositions (x=0.2 and 0.45) were deposited on Pt-coated Si and ITO/glass substrates via modified sol-gel technique. Microstructures of the films were evaluated using XRD, SEM and AFM. The optical transmission measurements on PZT films deposited on ITO/glass revealed a high transparency over 80% and a band gap of about 3.4 eV. The observed photocurrent exhibited a maximum and was attributed to band-to-band optical transitions.
Nunes, P., Fortunato Martins Vilarinho E. R. P. "
Properties presented by ZnO thin films deposited by magnetron sputtering and spray pyrolysis."
Key Engineering Materials. 230-232 (2002): 424-427.
AbstractThe most common techniques used to produce ZnO thin films are the spray pyrolysis and the magnetron sputtering techniques, low and high cost processes respectively. The aim of this work is to compare the properties of the films produced by these two techniques. The predominant difference observed was on the morphological properties. The films produced by spray pyrolysis have a rougher surface than the ones obtained by sputtering. Also the effect of the thermal annealing treatment is much more prononnced for the ZnO thin films produced by spray pyrolysis. After heat treatment films exhibit similar electrical properties and their application to optoelectronic devices is demonstrated.
Cabrita, A., Pereira Brida Silva Ferreira Fortunato Martins L. D. V. "
Role of the density of states in the colour selection of the collection spectrum of amorphous silicon-based Schottky photodiodes."
Key Engineering Materials. 230-232 (2002): 559-562.
AbstractThis work deals with the study of the role of intra-gap density of states on the colour selection of the collection spectrum of glass/ITO/a-Six:C1-x:H/Al Schottky photodiodes. In order to optimise the voltage colour selection and to study the influence of intragap density of states in the final device performances, different undoped a-Six:C1-x:H films (1 μm thick) have been produced in a conventional Plasma Enhanced Chemical Vapour Deposition (PECVD) system using silane and a controlled mixtures of silane and methane as gas sources. The properties of the films were analysed by dark conductivity measurements, infrared spectroscopy, visible spectroscopy and constant photocurrent method (CPM), to determine the valence controllability and to correlate the silicon carbide layer composition with the performances of the devices. The performances obtained concerning the spectral response of the devices were correlated with the carbon content and the density of states of the a-Six:C1-x:H films.
Águas, H., Fortunato Pereira Silva Martins E. L. V. "
Role of the i-layer thickness in the performance of a-Si:H Schottky barrier photodiodes."
Key Engineering Materials. 230-232 (2002): 587-590.
AbstractIn this work we present the current/voltage characteristics of Si:H/Pd Schottky structures using high quality, low defect density amorphous silicon (a-Si:H) deposited by a non-conventional, modified triode PECVD method. This new configuration allows the deposition of compact and high quality a-Si:H with a photosensitivity of 107, yielding films with low bulk defects. AFM measurements also revealed that these films have a very smooth surface allowing a low defect interface between the metal and the a-Si:H. As a result, we show that by using these a-Si:H films and by proper control of the i-layer thickness the reverse dark current of the diode can be highly reduced achieving signal to noise ratio of 106, surpassing the results usually achieved by p-i-n structures.