Export 9189 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Rodrigues, Alexandra P., Pedro M. P. Santos, João Pedro Veiga, Maria Helena Casimiro, and Luís M. Ferreira. "Electron Beam Irradiation on the Production of a Si- and Zr-Based Hybrid Material: A Study by FTIR and WDXRF." Materials. 16 (2023). AbstractWebsite

Sol-gel production of hybrid materials has, to some extent, revolutionised materials’ engineering and the way science and technology perceive the creation of new materials. Despite that, the method presents some limitations that are circumvented by radiation processing. Electron beam irradiation was used to promote synthesis of hybrid structures while using silanol-terminated PDMS, TEOS and TPOZ as precursors. Evaluation of the method’s performance was executed by gel fraction determination, WDXRF and FTIR-ATR. Results showed that, although there is some pre-irradiation reactivity between precursors, radiolysis induces scission on multiple sites of precursor’s structures, which induces hybrid network formation to a greater extent. Characterisation allowed determining electron beam irradiation to be effective in the creation of Si–O–Zr bonds, resulting in the production of a Class II hybrid material.

Bento Rebelo, H., B. Assunção, C. Bedon, and F. Amarante dos Santos. "Exploratory study on the use of bi-stable supports for the impact protection of point-fixed glazing systems." International Journal of Protective Structures (2023). AbstractWebsite
n/a
Dias, Ana Margarida Gonçalves Carvalho, Inês Pimentel Moreira, Iana Lychko, Cátia Lopes Soares, Arianna Nurrito, Arménio Jorge Moura Barbosa, Viviane Lutz-Bueno, Raffaele Mezzenga, Ana Luísa Carvalho, Ana Sofia Pina, and Ana Cecília Afonso Roque. "Hierarchical self-assembly of a reflectin-derived peptide." Frontiers in Chemistry. 11 (2023). AbstractWebsite

Reflectins are a family of intrinsically disordered proteins involved in cephalopod camouflage, making them an interesting source for bioinspired optical materials. Understanding reflectin assembly into higher-order structures by standard biophysical methods enables the rational design of new materials, but it is difficult due to their low solubility. To address this challenge, we aim to understand the molecular self-assembly mechanism of reflectin’s basic unit—the protopeptide sequence YMDMSGYQ—as a means to understand reflectin’s assembly phenomena. Protopeptide self-assembly was triggered by different environmental cues, yielding supramolecular hydrogels, and characterized by experimental and theoretical methods. Protopeptide films were also prepared to assess optical properties. Our results support the hypothesis for the protopeptide aggregation model at an atomistic level, led by hydrophilic and hydrophobic interactions mediated by tyrosine residues. Protopeptide-derived films were optically active, presenting diffuse reflectance in the visible region of the light spectrum. Hence, these results contribute to a better understanding of the protopeptide structural assembly, crucial for the design of peptide- and reflectin-based functional materials.

Barreira, António, Andreia F. M. Santos, Madalena Dionísio, Ana R. Jesus, Ana Rita C. Duarte, Željko Petrovski, Ana B. Paninho, Márcia G. Ventura, and Luis C. Branco. "Ionic Levothyroxine Formulations: Synthesis, Bioavailability, and Cytotoxicity Studies." International Journal of Molecular Sciences. 24 (2023). AbstractWebsite

Thyroid diseases affect a considerable portion of the population, with hypothyroidism being one of the most commonly reported thyroid diseases. Levothyroxine (T4) is clinically used to treat hypothyroidism and suppress thyroid stimulating hormone secretion in other thyroid diseases. In this work, an attempt to improve T4 solubility is made through the synthesis of ionic liquids (ILs) based on this drug. In this context, [Na][T4] was combined with choline [Ch]+ and 1-(2-hydroxyethyl)-3-methylimidazolium [C2OHMiM]+ cations in order to prepare the desired T4-ILs. All compounds were characterized by NMR, ATR-FTIR, elemental analysis, and DSC, aiming to check their chemical structure, purities, and thermal properties. The serum, water, and PBS solubilities of the T4-ILs were compared to [Na][T4], as well as the permeability assays. It is important to note an improved adsorption capacity, in which no significant cytotoxicity was observed against L929 cells. [C2OHMiM][T4] seems to be a good alternative to the commercial levothyroxine sodium salt with promising bioavailability.

Vicente da Silva, M., and A. N. Antão. "A new Hoek-Brown-Matsuoka-Nakai failure criterion for rocks." International Journal of Rock Mechanics and Mining Sciences. 172 (2023): 105602. AbstractWebsite

In the current paper, we propose a new three-dimensional strength criterion for rocks expressed in terms of the first principal stress invariant, I1, and the second and third invariants of the deviatoric stress tensor, J2 and J3. The design of this constitutive model conjugates the characteristics of two of the most well-known and widely used criteria in geotechnical engineering: Hoek-Brown and Matsuoka-Nakai. Its material parameters can be calibrated based on conventional axisymmetric compression and extension tests. Experimental polyaxial test data from a dozen different rock types were used to validate the current criterion.

Díaz, Rafael Sanabria, Brisid Isufi, Leandro Mouta Trautwein, and António Pinho Ramos. "Nonlinear analysis of flat slab-column connections to optimize the use of HPFRC under monotonic vertical loading." Structural Concrete. 24 (2023): 5787-5807. AbstractWebsite
n/a
Gonçalves, Rodrigo, David Henriques, Armando Antão, and Manuel Ritto-Corrêa. "On non-uniform plastic torsion of steel I-section cantilevers." Thin-Walled Structures. 187 (2023): 110731. AbstractWebsite

This paper aims at contributing towards a better understanding of the non-uniform elastoplastic torsion mechanism of I-section beams. The particular case of cantilevers subjected to an end torque is analysed, which constitutes a simple yet interesting problem, since the maximum torque is very close to the so-called Merchant upper bound (MUB), with added independent maximum bishear and Saint-Venant torques. Consequently, it turns out that the maximum torque can be significantly higher than that for uniform plastic torsion. Besides the MUB, several solutions are presented and compared, namely (i) a stress resultant-based solution stemming from the warping beam theory differential equilibrium equation and (ii) solutions obtained with several beam finite elements that allow for a coarse/refined description of warping. It is found that all models are in very close agreement in terms of maximum torque (including the MUB) and stress resultants. However, the beam finite elements that allow for bishear, even with a simplified warping function, are further capable of reproducing quite accurately the stress field, as a comparison with a 3D solid finite element solution shows. Although the paper is primarily concerned with the small displacement case, the influence of considering finite rotations is also addressed.

Santos, I. M., M. Alexandre, V. D. Mihailetchi, J. A. Silva, T. Mateus, A. Mouquinho, J. Boane, A. T. Vicente, D. Nunes, U. D. Menda, H. Águas, E. Fortunato, R. Martins, and MJ Mendes. "Optically-Boosted Planar IBC Solar Cells with Electrically-Harmless Photonic Nanocoatings." Advanced Optical Materials. 11 (2023). AbstractWebsite
n/a
Pinheiro, A., A. Ruivo, J. Rocha, M. Ferro, JV Pinto, J. Deuermeier, T. Mateus, A. Santa, MJ Mendes, R. Martins, S. Gago, C. A. T. Laia, and H. Águas. "Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics." Nanomaterials. 13 (2023). AbstractWebsite
n/a
Micheletti, A., FA dos Santos, and S. D. Guest. "Prestrain-induced bistability in the design of tensegrity units for mechanical metamaterials." Applied Physics Letters. 123 (2023). AbstractWebsite
n/a
Rogério, Flávio, Armando Antão N. Nuno M. C. Guerra, and Manuel Matos Fernandes. "PROBABILIDADE DE ROTURA DE TALUDES DE ESCAVAÇÃO DIMENSIONADOS DE ACORDO COM O EUROCÓDIGO 7. ESTUDO EXPLORATÓRIO." 2023. Abstract
n/a
Rotatori, FM, A. A. Chiarenza, M. Moreno-Azanza, and O. Mateus Rise of a dinasty: macroevolutionary and biogeographic patterns of iguanodontian dinosaurs across the Jurassic–Cretaceous transition. EAVP Annual Conference of the European Association of Vertebrate Palaeontologists. Palaeovertebrata, Special Volume 1-23. DOI: 10.18563/pv.eavp2023, 2023. Abstract
n/a
Ramos, António, Brisid Isufi, and Rui Marreiros. "SEISMIC BEHAVIOR OF SLAB–COLUMN CONNECTIONS USING HIGH PERFORMANCE FIBER REINFORCED CONCRETES." American Concrete Institute, ACI Special Publication. Vol. SP-357. 2023. 123-138. Abstract
n/a
Ramos, António Pinho, Brisid Isufi, Rui Marreiros, Dario Coronelli, Teresa Netti, Marco Lamperti Tornaghi, Georgios Tsionis, and Aurelio Muttoni. "Seismic Performance of Strengthened Slab-Column Connections in a Full-Scale Test." Journal of Earthquake Engineering. 27 (2023): 2299-2318. AbstractWebsite
n/a
Nóbrega, Cláudia S., Ana Luísa Carvalho, Maria João Romão, and Sofia R. Pauleta. "Structural Characterization of Neisseria gonorrhoeae Bacterial Peroxidase—Insights into the Catalytic Cycle of Bacterial Peroxidases." International Journal of Molecular Sciences. 24 (2023). AbstractWebsite

Neisseria gonorrhoeae is an obligate human pathogenic bacterium responsible for gonorrhea, a sexually transmitted disease. The bacterial peroxidase, an enzyme present in the periplasm of this bacterium, detoxifies the cells against hydrogen peroxide and constitutes one of the primary defenses against exogenous and endogenous oxidative stress in this organism. The 38 kDa heterologously produced bacterial peroxidase was crystallized in the mixed-valence state, the active state, at pH 6.0, and the crystals were soaked with azide, producing the first azide-inhibited structure of this family of enzymes. The enzyme binds exogenous ligands such as cyanide and azide, which also inhibit the catalytic activity by coordinating the P heme iron, the active site, and competing with its substrate, hydrogen peroxide. The inhibition constants were estimated to be 0.4 ± 0.1 µM and 41 ± 5 mM for cyanide and azide, respectively. Imidazole also binds and inhibits the enzyme in a more complex mechanism by binding to P and E hemes, which changes the reduction potential of the latest heme. Based on the structures now reported, the catalytic cycle of bacterial peroxidases is revisited. The inhibition studies and the crystal structure of the inhibited enzyme comprise the first platform to search and develop inhibitors that target this enzyme as a possible new strategy against N. gonorrhoeae.

Duarte, Marlene, Victor D. Alves, Márcia Correia, Catarina Caseiro, Luís M. A. Ferreira, Maria João Romão, Ana Luísa Carvalho, Shabir Najmudin, Edward A. Bayer, Carlos M. G. A. Fontes, and Pedro Bule. "Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies." International Journal of Biological Macromolecules. 224 (2023): 55-67. AbstractWebsite

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.

Ribeiro, G., G. Ferreira, U. D. Menda, M. Alexandre, M. J. Brites, M. A. Barreiros, S. Jana, H. Águas, R. Martins, P. A. Fernandes, P. Salomé, and MJ Mendes. "Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation." Nanomaterials. 13 (2023). AbstractWebsite
n/a
Menda, U. D., G. Ribeiro, J. Deuermeier, E. López, D. Nunes, S. Jana, I. Artacho, R. Martins, I. Mora-Seró, MJ Mendes, and I. Ramiro. "Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineering." ACS Photonics. 10 (2023): 3647-3655. AbstractWebsite
n/a
Vicente da Silva, M., and A. N. Antão. "Three-dimensional Limit Analysis using the Extended-Matsuoka–Nakai yield criterion." Computers and Geotechnics. 161 (2023): 105526. AbstractWebsite

This paper investigates the implementation of the Extended-Matsuoka–Nakai yield criterion on a strict Limit Analysis finite element formulation. The current approach is based on a three-field mixed finite element model and the Alternating Direction Method of Multipliers optimization algorithm. With the support of duality principles two variants are derived, the lower bound and the upper bound element. The main novelty of this work is the development of an efficient iterative predictor–corrector scheme, customized for the Extended-Matsuoka–Nakai. This scheme is an indispensable requirement for this formulation. To conclude four numerical examples are presented to assess the effectiveness and efficiency of the numerical tool.

Santana, T., A. Antão, N. Guerra, and M. Vicente da Silva. "Upper bounds for the three-dimensional seismic active earth pressure coefficients." Géotechnique Letters. 13 (2023): 65-74. AbstractWebsite

A numerical implementation of the upper-bound theorem of limit analysis is applied to determine two-dimensional (2D) and three-dimensional (3D) active horizontal earth pressure coefficients considering seismic actions through a horizontal seismic coefficient. Results are obtained for vertical wall, horizontal soil, different friction angles of the soil, soil-to-wall friction ratios, horizontal seismic coefficients and wall width-to-height ratios. The few cases for which 3D active earth pressure coefficients are available in the literature using upper-bound methods were used for comparison with the corresponding earth pressure coefficients obtained in this study. This showed a general improvement of these results, which allows expecting a good accuracy for the set of cases studied. The ratios between the 3D and 2D horizontal active earth pressure coefficients are found to be practically independent of the soil-to-wall friction ratio. An equation is proposed for calculating these ratios. This equation can be easily used in the design of geotechnical structures requiring the determination of 3D active earth pressure coefficients.

Coelho, João, Ricardo F. Correia, Sara Silvestre, Tomás Pinheiro, Ana C. Marques, Rosário M. P. Correia, Joana Vaz Pinto, Elvira Fortunato, and Rodrigo Martins. "{Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications}." Microchimica Acta. 190 (2023): 1-10. Abstract

Laser-induced graphene (LIG) is as a promising material for flexible microsupercapacitors (MSCs) due to its simple and cost-effective processing. However, LIG-MSC research and production has been centered on non-sustainable polymeric substrates, such as polyimide. In this work, it is presented a cost-effective, reproducible, and robust approach for the preparation of LIG structures via a one-step laser direct writing on chromatography paper. The developed strategy relies on soaking the paper in a 0.1 M sodium tetraborate solution (borax) prior to the laser processing. Borax acts as a fire-retardant agent, thus allowing the laser processing of sensitive substrates that other way would be easily destroyed under the high-energy beam. LIG on paper exhibiting low sheet resistance (30 $Ømega$ sq−1) and improved electrode/electrolyte interface was obtained by the proposed method. When used as microsupercapacitor electrodes, this laser-induced graphene resulted in specific capacitances of 4.6 mF cm−2 (0.015 mA cm−2). Furthermore, the devices exhibit excellent cycling stability (> 10,000 cycles at 0.5 mA cm−2) and good mechanical properties. By connecting the devices in series and parallel, it was also possible to control the voltage and energy delivered by the system. Thus, paper-based LIG-MSC can be used as energy storage devices for flexible, low-cost, and portable electronics. Additionally, due to their flexible design and architecture, they can be easily adapted to other circuits and applications with different power requirements. Graphical Abstract: [Figure not available: see fulltext.]

Pinheiro, Ana, Andreia Ruivo, Marta Ferro, Joana Vaz Pinto, Jonas Deuermeier, Tiago Mateus, Ana Santa, Manuel J. Mendes, Rodrigo Martins, Sandra Gago, C. A. T. Laia, and Á. Hugo. "{Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics}." (2023). Abstract
n/a