Biscaia, Hugo, Carlos Chastre, Noel Franco, and João Cardoso. "
Modelo analítico não linear para analisar as ligações CFRP/betão."
Encontro Nacional Betão Estrutural 2016. FCTUC, Coimbra, Portugal 2016. 9.
AbstractDesde que o reforço estrutural começou a utilizar materiais de matriz polimérica reforçada com fibras (FRP) que o fenómeno do descolamento prematuro dos compósitos de FRP da superfície colada tem merecido especial atenção de vários autores. O conhecimento do processo de descolamento completo da ligação CFRP/betão ganhou assim, algum destaque nos últimos anos. Na generalidade, as ligações CFRP/betão têm sido analisadas com recurso métodos analíticos e numéricos sendo que, nos primeiros, se tem vindo a adoptar leis de aderência muito simplificadas das observadas experimentalmente. Apesar das simplificações adoptas nas análises analíticas, as expressões obtidas são muito importantes já que têm grande potencial em serem adoptadas pelos códigos ou normas nacionais e/ou interncionais. Por outro lado, e apesar de adoptarem leis de aderência mais refinadas, as análises numéricas permitem apenas a obtenção de expressões empíricas que podem não contemplar a generalidade dos casos estudados. Neste sentido, este trabalho apresenta um conjunto de soluções analíticas com base numa lei de aderência exponencial capaz de representar todas as não-linearidades envolvidas no descolamento da ligação CFRP/betão. Os resultados analíticos são confrontados com ensaios experimentais em que a técnica de colagem EBR foi utilizada. Contudo, o modelo analítico proposto pode ser também utilizado quando a técnica Near Surface Mounted (NSM) é adoptada. Adicionalmente, são apresentadas soluções analíticas para o caso em que o deslocamento relativo entre o CFRP e o betão é restringido por, e.g., um dispositivo de amarração mecânica instalado na extremidade oposta à aplicação de carga.
Conejero, José, Isabel Brito, Ana Moreira, Jácome Cunha, and João Araújo. "
Modeling the Impact of UAVs in Sustainability."
5th International Workshop on Requirements Engineering for Sustainable Systems (RE4SuSy) @RE16. Beijing, China: IEEE CS, 2016.
Wojcik, P.J., Pereira Martins Fortunato L. R. E. Metal oxide nanoparticle engineering for printed electrochemical applications. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques., 2016.
AbstractEngineering procedures governing the selection or development of printable nanostructured metal oxide nanoparticles for chromic, photovoltaic, photocatalytic, sensing, electrolyte-gated TFTs, and power storage applications are established in this chapter. The main focus is given on how to perform the material selection and formulation of printable dispersion in order to develop functional films for electrochemical applications. This chapter is divided into four main parts. Firstly, a brief introduction on electrochemically active nanocrystalline metal oxide films developed via printing techniques is given. This is followed by the description of the film morphology, structure, and required functionality. A theoretical approach to understand the impact of size and shape of nanoparticles on an ink formulation and electrochemical performance being the subject of the third section provides a greater control over the material selection. We attempt to describe these properties and show that for a given material, geometry and size of the nanoparticles have a major influence on the electrochemical reactivity and response time. This gives the ability to tune the performance of the film simply by varying the morphology of incorporated nanostructures. This section is completed by the recommendations on each major step of an ink formulation, together with imposed critical constraints concerning the fluid control. Finally, the performance of the ink-jetprinted dual-phase electrochromic films is discussed as a case study. By providing such a rather systematic survey, we aim to stress the importance of proper design strategy that would result in both improved physicochemical properties of nanoparticle-loaded inks and enhanced electrochemical performance of printed functional films. © Springer International Publishing Switzerland 2016.