Maximally modulated singular integral operators and their applications to pseudodifferential operators on Banach function spaces

Citation:
Karlovich, Alexei Yu. "Maximally modulated singular integral operators and their applications to pseudodifferential operators on Banach function spaces." Function Spaces in Analysis. Contemporary Mathematics, 645. Ed. Krzysztof Jarosz. Providence, Rhode Island: American Mathematical Society, 2015. 165-178.

Abstract:

We prove that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space \(X(\mathbb{R}^n)\) and on its associate space \(X'(\mathbb{R}^n)\) and a maximally modulated Calderón-Zygmund singular integral operator \(T^{\Phi}\) is of weak type \((r,r)\) for all \(r\in(1,\infty)\), then \(T^{\Phi}\) extends to a bounded operator on \(X(\mathbb{R}^n)\). This theorem implies the boundedness of the maximally modulated Hilbert transform on variable Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R})\) under natural assumptions on the variable exponent \(p:\mathbb{R}\to(1,\infty)\). Applications of the above result to the boundedness and compactness of pseudodifferential operators with \(L^\infty(\mathbb{R},V(\mathbb{R}))\)-symbols on variable Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R})\) are considered. Here the Banach algebra \(L^\infty(\mathbb{R},V(\mathbb{R}))\) consists of all bounded measurable \(V(\mathbb{R})\)-valued functions on \(\mathbb{R}\) where \(V(\mathbb{R})\) is the Banach algebra of all functions of bounded total variation.

Related External Link

Preprint in arXiv:

http://arxiv.org/abs/1408.4400