Pedro Mota
Assistant Professor
Department of Mathematics at Faculdade de Ciências e Tecnologia of Universidade NOVA de Lisboa (email)
Department of Mathematics at Faculdade de Ciências e Tecnologia of Universidade NOVA de Lisboa (email)
The geometric Brownian motion (GBM) is very popular in modeling the dynamics of stock prices. However, the constant volatility assumption is questionable and many models with nonconstant volatility have been developed. In the papers [7,12] the authors introduce a regime switching process where in each regime the process is driven by GBM and the change in regime is defined by the crossing of a threshold. In this paper we used Akaike's and Bayesian information criteria to show that the GBM with regimes provides a better fit than the GBM. We also perform a forecasting comparison of the models for two selected companies.
n/a