Export 2389 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Soares, P. I. P., C. Echeverria, AC Baptista, C. F. C. João, S. N. Fernandes, A. P. C. Almeida, JC Silva, M. H. Godinho, and J. P. Borges Hybrid polysaccharide-based systems for biomedical applications. Hybrid Polymer Composite Materials: Applications., 2017. AbstractWebsite

Hybrid materials have been widely studied for structural applications. Polysaccharide-based fibers, especially cellulosic fibers, have been explored in the last two decades as substitutes of the traditional reinforcements made of glass or carbon fibers due to their mechanical properties. However, their biocompatibility, biodegradability, and chemistry have attracted the researchers and new developments in the field of smart and functional materials arise in diverse applications. This chapter will focus on the biomedical applications of polysaccharide-based smart and functional materials, namely those concerning biosensors and actuators, theranostic systems, and tissue-engineering applications. Special attention will be given to cellulose- and chitin/chitosan-based hybrid materials because these are the two most abundant polysaccharides and probably the most promising for the development of hybrid materials for biomedical applications. Biomimetic strategies for the development of smart and functional hybrid materials will also be highlighted. © 2017 Elsevier Ltd All rights reserved.

Ribeiro, IC, C. C. Leclercq, N. Simoes, A. Toureiro, I. Duarte, J. B. Freire, M. M. Chaves, J. Renaut, and C. Pinheiro. "Identification of chickpea seed proteins resistant to simulated in vitro human digestion." Journal of Proteomics. 169 (2017): 143-152. AbstractWebsite
n/a
Santos-Silva, Teresa, Pessoa JC, Correia I, Chorna I, Cavaco I, Roy S, Kuznetsov ML, Ribeiro N, Justino G, Marques F, Silva TS, Santos M, Santos HM, Capelo JL, and Doutch J. "Interaction of VIVO(acac)2 with human serum transferrin and albumin." (2017). AbstractWebsite
n/a
Fernandes, Susete N., Pedro L. Almeida, Nuno Monge, Luis E. Aguirre, Dennys Reis, Cristiano LP de Oliveira, António MF Neto, Pawel Pieranski, and Maria H. Godinho. "Mind the Microgap in Iridescent Cellulose Nanocrystal Films." Advanced Materials. 29.2 (2017). Abstract
n/a
Lackinger, Aaron, Cristina Fernández Fernández, Beatriz Comendador Rey, Elin Figueiredo, João P. Veiga, and Rui JC Silva. "Sacar el estaño de las piedras: un procedimiento artesanal para la obtención la obtención de estaño en la Galicia Meridional." Presente y futuro de los paisajes mineros del pasado: Estudios sobre miner{\'ıa, metalurgia y poblamiento. Editorial Universidad de Granada, 2017. 259-267. Abstract
n/a
Lourenço, P., B. J. Guerreiro, P. Batista, P. Oliveira, and C. Silvestre. "Sensing and Control for Autonomous Vehicles: Applications to Land, Water and Air Vehicles." Eds. Thor I. Fossen, Kristin Y. Pettersen, and Henk Nijmeijer. Springer, 2017. 121-141. Abstract
n/a
Lourenço, P., B. J. Guerreiro, P. Batista, P. Oliveira, and C. Silvestre. "Sensing and Control for Autonomous Vehicles: Applications to Land, Water and Air Vehicles." Eds. Thor I. Fossen, Kristin Y. Pettersen, and Henk Nijmeijer. Springer, 2017. 121-141. Abstract
n/a
Vicente, António T., Pawel J. Wojcik, Manuel J. Mendes, Hugo Águas, Elvira Fortunato, and Rodrigo Martins. "A statistics modeling approach for the optimization of thin film photovoltaic devices." Solar Energy. 144 (2017): 232-243. Abstract
n/a
Fernandes, Hugo, Válter Lúcio, and António Ramos. "Strengthening of RC slabs with reinforced concrete overlay on the tensile face." Engineering Structures. 132 (2017): 540-550. AbstractWebsite
n/a
Romão, MJ, C. Coelho, T. Santos-Silva, A. Foti, M. Terao, E. Garattini, and S. Leimkühler. "Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics." Current Opinion in Chemical Biology. 37 (2017): 39-47. Abstract
n/a
Faria, Jaime, Coro Echeverria, João P. Borges, Maria H. Godinho, and Paula I. P. Soares. "Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning." RSC Advances. 7.77 (2017): 48972-48979. Abstract
n/a
Pimentel, A., A. Araújo, B. J. Coelho, D. Nunes, M. J. Oliveira, MJ Mendes, H. Águas, R. Martins, and E. Fortunato. "{3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms}." Materials. 10 (2017). Abstract

© 2017 by the authors. In the present study, zinc oxide (ZnO) nanorods (NRs) with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/or quality control devices. This class of substrates also enables highly-sensitive Raman molecular detection, amiable to several different operational environments and target surfaces. The structural characterization of the ZnO NR arrays has been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical measurements. The effects of the synthesis time (5-30 min) and temperature (70-130 °C) of the ZnO NR arrays decorated with silver nanoparticles (AgNPs) have been investigated in view of their application for surface-enhanced Raman scattering (SERS) molecular detection. The size and density of the ZnO NRs, as well as those of the AgNPs, are shown to play a central role in the final SERS response. A Raman enhancement factor of 7 × 105was obtained using rhodamine 6 G (RG6) as the test analyte; a ZnO NR array was produced for only 5 min at 70 °C. This condition presents higher ZnO NR and AgNP densities, thereby increasing the total number of plasmonic "hot-spots", their volume coverage and the number of analyte molecules that are subject to enhanced sensing.

Duarte, Ana Rita C., Ana Sofia D. Ferreira, Susana Barreiros, Eurico Cabrita, Rui L. Reis, and Alexandre Paiva. "{A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies}." European Journal of Pharmaceutics and Biopharmaceutics. 114 (2017): 296-304. AbstractWebsite

THEDES, so called therapeutic deep eutectic solvents are here defined as a mixture of two components, which at a particular molar composition become liquid at room temperature and in which one of them is an active pharmaceutical ingredient (API). In this work, THEDES based on menthol complexed with three different APIs, ibuprofen (ibu), BA (BA) and phenylacetic acid (PA), were prepared. The interactions between the components that constitute the THEDES were studied by NMR, confirming that the eutectic system is formed by H-bonds between menthol and the API. The mobility of the THEDES components was studied by PFGSE NMR spectroscopy. It was determined that the self-diffusion of the species followed the same behavior as observed previously for ionic liquids, in which the components migrate via jumping between voids in the suprastructure created by punctual thermal fluctuations. The solubility and permeability of the systems in an isotonic solution was evaluated and a comparison with the pure APIs was established through diffusion and permeability studies carried out in a Franz cell. The solubility of the APIs when in the THEDES system can be improved up to 12 fold, namely for the system containing ibu. Furthermore, for this system the permeability was calculated to be 14 × 10−5 cm/s representing a 3 fold increase in comparison with the pure API. With the exception of the systems containing PA an increase in the solubility, coupled with an increase in permeability was observed. In this work, we hence demonstrate the efficiency of THEDES as a new formulation for the enhancement of the bioavailability of APIs by changing the physical state of the molecules from a solid dosage to a liquid system.

Vicente, A. T., PJ Wojcik, MJ Mendes, H. Águas, E. Fortunato, and R. Martins. "{A statistics modeling approach for the optimization of thin film photovoltaic devices}." Solar Energy. 144 (2017). Abstract

© 2017 The growing interest in exploring thin film technologies to produce low cost devices such as n-i-p silicon solar cells, with outstanding performances and capability to address the highly relevant energy market, turns the optimization of their fabrication process a key area of development. The usual one-dimensional analysis of the involved parameters makes it difficult and time consuming to find the optimal set of conditions. To overcome these difficulties, the combination of experimental design and statistical analysis provides the tools to explore in a multidimensional fashion the interactions between fabrication parameters and expected experimental outputs. Design of Experiment and Multivariate Analysis are demonstrated here for the optimization of: (1) the low temperature deposition (150 °C) of high quality intrinsic amorphous silicon (i-a-Si:H); and (2) the matching of the n-, i-, and p-silicon layers thickness to maximize the efficiency of thin film solar cells. The multiple regression method applied, validated through analysis of variance and evaluated against exact numerical simulations, is shown to predict the overall intrinsic layer properties and the devices performance. The results confirm that experimental design and statistical data analysis are effective approaches to improve, within a minimum time frame and high certainty, the properties of silicon thin films, and subsequently the layer structure of solar cells.

Fassini, Dario, Ana Rita Duarte, Rui Reis, and Tiago Silva. "{Bioinspiring Chondrosia reniformis (Nardo, 1847) Collagen-Based Hydrogel: A New Extraction Method to Obtain a Sticky and Self-Healing Collagenous Material}." Marine Drugs. 15 (2017): 380. AbstractWebsite

Collagen is a natural and abundant polymer that serves multiple functions in both invertebrates and vertebrates. As collagen is the natural scaffolding for cells, collagen-based hydrogels are regarded as ideal materials for tissue engineering applications since they can mimic the natural cellular microenvironment. Chondrosia reniformis is a marine demosponge particularly rich in collagen, characterized by the presence of labile interfibrillar crosslinks similarly to those described in the mutable collagenous tissues (MCTs) of echinoderms. As a result single fibrils can be isolated using calcium-chelating and disulphide-reducing chemicals. In the present work we firstly describe a new extraction method that directly produces a highly hydrated hydrogel with interesting self-healing properties. The materials obtained were then biochemically and rheologically characterized. Our investigation has shown that the developed extraction procedure is able to extract collagen as well as other proteins and Glycosaminoglycans (GAG)-like molecules that give the collagenous hydrogel interesting and new rheological properties when compared to other described collagenous materials. The present work motivates further in-depth investigations towards the development of a new class of injectable collagenous hydrogels with tailored specifications.

Sanchez-Sobrado, Olalla, Manuel J. Mendes, Sirazul Haque, Tiago Mateus, Andreia Araujo, Hugo Aguas, Elvira Fortunato, and Rodrigo Martins. "{Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping}." J. Mater. Chem. C (2017). Abstract
n/a
Araújo, A., A. Pimentel, M. J. Oliveira, MJ Mendes, R. Franco, E. Fortunato, H. Águas, and R. Martins. "{Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms}." Flexible and Printed Electronics. 2 (2017). Abstract

Paper substrates, coated with ZnO nanorods (NRs) decorated with Ag nanoparticles (NPs), allowed the production of inexpensive, highly-performing and extremely reproducible three-dimensional (3D) SERS platforms. The ZnO NRs were synthesized by a simple, fast and low-temperature hydrothermal method assisted by microwave radiation and made SERS-active by decorating them with a dense array of silver nanoparticles deposited via a single-step thermal evaporation technique. Using Rhodamine 6G (R6G) as a probe molecule, with an amount down to 10-9 M, the SERS substrates allowed a Raman signal enhancement of 107. The contribution of the inter-Ag-NPs gaps for 3D geometry, ZnO NRs orientation and the large sensing area allowed by theNRscaffolds, were determinant factors for the significant Raman enhancement observed. The results demonstrate that plasmonic nanorod forests, covered with Ag NPs, are efficient SERS substrates with the advantages of being recyclable, flexible, lightweight, portable, biocompatible and extremely low-cost.

Pohl, Randolf, Fran{\c c}ois Nez, Luis M. P. Fernandes, Marwan Abdou Ahmed, Fernando D. Amaro, Pedro Amaro, Fran{\c c}ois Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Beatrice Franke, Sandrine Galtier, Adolf Giesen, Andrea L. Gouvea, Johannes Götzfried, Thomas Graf, Theodor W. Hänsch, Malte Hildebrandt, Paul Indelicato, Lucile Julien, Klaus Kirch, Andreas Knecht, Paul Knowles, Franz Kottmann, Julian J. Krauth, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Jorge Machado, Cristina M. B. Monteiro, Fran{\c c}oise Mulhauser, Tobias Nebel, Paul Rabinowitz, Joaquim M. F. dos Santos, José Paulo Santos, Lukas A. Schaller, Karsten Schuhmann, Catherine Schwob, Csilla I. Szabo, David Taqqu, João F. C. A. Veloso, Andreas Voss, Birgit Weichelt, and Aldo Antognini. "{Laser Spectroscopy of Muonic Atoms and Ions}." Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP2016). Journal of the Physical Society of Japan, 2017. Abstract
n/a
Marouf, S., A. Beniaiche, K. Kardarian, MJ Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato, and R. Martins. "{Low-temperature spray-coating of high-performing ZnO:Al films for transparent electronics}." Journal of Analytical and Applied Pyrolysis. 127 (2017). Abstract

© 2017 Elsevier B.V. Ultrasonic spray pyrolysis deposition of ZnO-based materials offers an attractive high-throughput low-cost route towards industrial production of high-quality transparent conductive oxide (TCO) thin-films. In this work, undoped and aluminium-doped ZnO films have been grown employing ultrasonic spray pyrolysis at relatively low-temperate (300 °C), followed by a post-annealing treatment. The role of Al concentration in the starting solution, as well as the rapid thermal annealing (RTA) atmosphere, were investigated and correlated to the morphological, structural, electrical and optical properties of the films. The remarkable enhancement of electrical conductivity attained here is mainly ascribed to the combined effects of: (1) homogenous incorporation of Al3+into the ZnO matrix, which enhances crystal quality providing higher electronic mobility; and (2) the RTA which releases the localized electrons caused by oxygen absorption and thereby increases the free carrier density. Under optimum deposition conditions, a low resistivity and a high optical transmittance around 4 × 10−3$Ømega$ cm and 87{%}, respectively, were obtained. The application of the RTA post-process after low temperature growth has several advantages relative to the direct growth at high temperature (usually 400–575 °C), such as shorter growth time and lower cost associated to the spray pyrolysis equipment requirements and usage. The results suggest that the electrical and optical properties of the ZnO:Al films can be further improved for solar cell applications by controlling the temperature of the post-deposition annealing in reducing atmosphere.

Goswami, S., S. Nandy, A. N. Banerjee, A. Kiazadeh, G. R. Dillip, JV Pinto, S. W. Joo, R. Martins, and E. Fortunato. "{“Electro-Typing” on a Carbon-Nanoparticles-Filled Polymeric Film using Conducting Atomic Force Microscopy}." Advanced Materials. 29 (2017). Abstract

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Next-generation electrical nanoimprinting of a polymeric data sheet based on charge trapping phenomena is reported here. Carbon nanoparticles (CNPs) (waste carbon product) are deployed into a polymeric matrix (polyaniline) (PANI) as a charge trapping layer. The data are recorded on the CNPs-filled polyaniline device layer by “electro-typing” under a voltage pulse (VET, from ±1 to ±7 V), which is applied to the device layer through a localized charge-injection method. The core idea of this device is to make an electrical image through the charge trapping mechanism, which can be “read” further by the subsequent electrical mapping. The density of stored charges at the carbon–polyaniline layer, near the metal/polymer interface, is found to depend on the voltage amplitude, i.e., the number of injected charge carriers. The relaxation of the stored charges is studied by different probe voltages and for different devices, depending on the percolation of the CNPs into the PANI. The polymeric data sheet retains the recorded data for more than 6 h, which can be refreshed or erased at will. Also, a write–read–erase–read cycle is performed for the smallest “bit” of stored information through a single contact between the probe and the device layer.

2016
Ito, Y., T. Tochio, H. Ohashi, M. Yamashita, S. Fukushima, M. Polasik, K. Słabkowska, Ł. Syrocki, E. Szymańska, J. Rzadkiewicz, P. Indelicato, J. P. Marques, M. C. Martins, J. P. Santos, and F. Parente. "Kα1,2x-ray linewidths, asymmetry indices, and [KM]shake probabilities in elements Ca to Ge and comparison with theory for Ca, Ti, and Ge." Physical Review A. 94 (2016): 042506-11. AbstractWebsite
n/a
Branquinho, Rita, Ana Santa, Emanuel Carlos, Daniela Salgueiro, Pedro Barquinha, Rodrigo Martins, and Elvira Fortunato. "{Solution Combustion Synthesis: Applications in Oxide Electronics}." Developments in Combustion Technology. Eds. Kyprianidis G. Konstantinos, and Jan Skvaril. InTech, 2016. 397-417. Abstract

Oxide-based electronics have been well established as an alternative to silicon technology; however, typical processing requires complex, high-vacuum equipment, which is a major drawback, particularly when targeting low-cost applications. The possibility to deposit the materials by low-cost techniques such as inkjet printing has drawn tremendous interest in solution processible materials for electronic applications; however, high processing temperatures still required. To overcome this issue, solution combustion synthesis has been recently pursued. Taking advantage of the exothermic nature of the reaction as a source of energy for localized heating, the precursor solutions can be converted into oxides at lower process temperatures. Theoretically, this can be applied to any metal ions to produce the desired oxide, opening unlimited possibilities to materials' composition and combinations. Solution combustion synthesis has been applied for the production of semiconductor thin films based on ZnO, In2O3, SnO2 and combinations of these oxides, and also for high $ąppa$ dielectrics (Al2O3). All of which are required for numerous electronic devices and applications such as fully oxide-based thin-film transistors (TFTs). The properties of produced thin films are highly dependent on the precursor solution characteristics; hence, the influence of several processing parameters; organic fuel, solvent and annealing temperature was studied. Although precursor solution degradation/oxide formation mechanisms are not yet fully understood, particularly for thin films, we demonstrate that high-performance devices are obtained with combustion solution-based metal oxide thin films. The results clearly show that solution combustion synthesis is becoming one of the most promising methods for low-temperature flexible electronics.

Lorenz, M., et al. "{The 2016 oxide electronic materials and oxide interfaces roadmap}." Journal of Physics D: Applied Physics. 49 (2016): 433001. AbstractWebsite

Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on 'oxide electronic materials and oxide interfaces'. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action 'towards oxide-based electronics' which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements.

Carlos, Emanuel, Rita Branquinho, Asal Kiazadeh, Pedro Barquinha, Rodrigo Martins, and Elvira Fortunato. "{UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistors}." ACS Applied Materials {&} Interfaces. 8 (2016): 31100-31108. AbstractWebsite

Solution processing of amorphous metal oxides has lately been used as an option to implement in flexible electronics, allowing a reduction of the associated costs and high performance. However, the research has focused more on the semiconductor layer rather than on the insulator layer, which is related to the stability and performance of the devices. This work aims to evaluate amorphous aluminum oxide thin films produced by combustion synthesis and the influence of far-ultraviolet (FUV) irradiation on the properties of the insulator on thin-film transistors (TFTs) using different semiconductors, in order to have compatibility with flexible substrates. An optimized dielectric layer was obtained for an annealing of 30 min assisted by FUV exposure. These thin films were applied in gallium–indium–zinc oxide TFTs as dielectrics showing the best results for TFTs annealed at 180 °C with FUV irradiation: good reproducibility with a subthreshold slope of 0.11 ± 0.01 V dec –1 and a turn-on voltage of −0.12 ± 0.05 V...