Export 1243 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Mano, Francisca, Ivo M. Aroso, Susana Barreiros, João Paulo Borges, Rui L. Reis, Ana Rita C. Duarte, and Alexandre Paiva. "Production of poly (vinyl alcohol)(PVA) fibers with encapsulated natural deep eutectic solvent (NADES) using electrospinning." ACS Sustainable Chemistry & Engineering. 3 (2015): 2504-2509. Abstract
n/a
Neagu, E. R., M. C. Lanca, C. J. Dias, and J. N. Marat-Mendes. "Space Charge and Dipolar Charge Contribution at Polar Polymers Polarization." Ieee Transactions on Dielectrics and Electrical Insulation. 22 (2015): 1419-1426. AbstractWebsite
n/a
Bernardo, G. M., F. R. Damásio, T. A. N. Silva, and M. A. R. Loja A Study on the Dynamic Behaviour of Functionally Graded Plates. International Conference on Advances in Vibrations. Porto, Portugal, 2015. Abstract
n/a
Conchinha, Cristina, João Vilhete Viegas D'Abreu, and J. C. Freitas. "Taller de formación robots y necesidades educativas especiales–{NEE}: {La} robótica educativa aplicada en contexto inclusivo." Ubicuo {Social}: {Aprendizage} con {TIC}. 2015. Abstract
n/a
Barros, Alexandre A., A. N. A. Rita, A. R. C. Duarte, Ricardo A. Pires, Belém Sampaio-Marques, Paula Ludovico, Estevão Lima, João F. Mano, and Rui L. Reis. "{Bioresorbable ureteral stents from natural origin polymers}." Journal of Biomedical Materials Research - Part B Applied Biomaterials. 103 (2015): 608-617. Abstract

In this work, stents were produced from natural origin polysaccharides. Alginate, gellan gum, and a blend of these with gelatin were used to produce hollow tube (stents) following a combination of templated gelation and critical point carbon dioxide drying. Morphological analysis of the surface of the stents was carried out by scanning electron microscopy. Indwelling time, encrustation, and stability of the stents in artificial urine solution was carried out up to 60 days of immersion. In vitro studies carried out with simulated urine demonstrated that the tubes present a high fluid uptake ability, about 1000{%}. Despite this, the materials are able to maintain their shape and do not present an extensive swelling behavior. The bioresorption profile was observed to be highly dependent on the composition of the stent and it can be tuned. Complete dissolution of the materials may occur between 14 and 60 days. Additionally, no encrustation was observed within the tested timeframe. The ability to resist bacterial adherence was evaluated with Gram-positive Staphylococcus aureus and two Gram-negatives Escherichia coli DH5 alpha and Klebsiella oxytoca. For K. oxytoca, no differences were observed in comparison with a commercial stent (Biosoft((R)) duo, Porges), although, for S. aureus all tested compositions had a higher inhibition of bacterial adhesion compared to the commercial stents. In case of E. coli, the addition of gelatin to the formulations reduced the bacterial adhesion in a highly significant manner compared to the commercial stents. The stents produced by the developed technology fulfill the requirements for ureteral stents and will contribute in the development of biocompatible and bioresorbable urinary stents.

Aroso, Ivo M., Ana Rita C. Duarte, Ricardo R. Pires, João F. Mano, and Rui L. Reis. "{Cork processing with supercritical carbon dioxide: Impregnation and sorption studies}." Journal of Supercritical Fluids. 104 (2015): 251-258. AbstractWebsite

Abstract The present study relates to the use of supercritical carbon dioxide (SCCO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater}) to modify the properties of cork by incorporation of new molecules. The impact of SCCO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater}processing on the morphology and on the mechanical properties was found to be negligible.The impregnation of disperse blue 14 (blue dye) on cubic shaped cork samples of 5 mm occurs progressively,is dependent of the processing conditions and of the presence of lenticels and growth rings. The impregnation of the samples bulk was achieved with processing at 10 MPa and 313 K for 16 h. The solubility and sorption of SCCO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater} in the cork matrix was measured using circular discs and the diffusion coefficients calculated to be on the order of 10{\textless}sup{\textgreater}-8{\textless}/sup{\textgreater} cm{\textless}sup{\textgreater}2{\textless}/sup{\textgreater}/s, the same order as for wood materials. This work demonstrates the feasibility of supercritical fluid technology to impart new features to cork, which may lead to innovative architectural, outdoor and industrial applications.

Aroso, I. M., R. Craveiro, Â. Rocha, M. Dionísio, S. Barreiros, R. L. Reis, A. Paiva, and A. R. C. Duarte. "{Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technology}." International Journal of Pharmaceutics. 492 (2015). Abstract

© 2015 Elsevier B.V. Abstract Deep eutectic solvents (DES) can be formed by bioactive compounds or pharmaceutical ingredients. A therapeutic DES (THEDES) based on ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and menthol was synthesized and its thermal behavior was analyzed by differential scanning calorimetry (DSC). A controlled drug delivery system was developed by impregnating a starch:poly-Ï$μ$-caprolactone polymeric blend (SPCL 30:70) with the menthol:ibuprofen THEDES in different ratios (10 and 20 wt{%}), after supercritical fluid sintering at 20 MPa and 50 °C. The morphological characterization of SPCL matrices impregnated with THEDES was performed by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Drug release studies were carried out in a phosphate buffered saline. The results obtained provide important clues for the development of carriers for the sustainable delivery of bioactive compounds.

Barros, A. A., C. Oliveira, R. L. Reis, E. Lima, and A. R. C. Duarte. "{Ketoprofen-eluting biodegradable ureteral stents by CO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater}impregnation: In vitro study}." International Journal of Pharmaceutics. 495 (2015). Abstract

© 2015 Elsevier B.V. Ureteral stents are indispensable tools in urologic practice. The main complications associated with ureteral stents are dislocation, infection, pain and encrustation. Biodegradable ureteral stents are one of the most attractive designs with the potential to eliminate several complications associated with the stenting procedure. In this work we hypothesize the impregnation of ketoprofen, by CO 2 -impregnation in a patented biodegradable ureteral stent previously developed in our group. The biodegradable ureteral stents with each formulation: alginate-based, gellan gum-based were impregnated with ketoprofen and the impregnation conditions tested were 100 bar, 2 h and three different temperatures (35 °C, 40°C and 50°C). The impregnation was confirmed by FTIR and DSC demonstrated the amorphization of the drug upon impregnation. The in vitro elution profile in artificial urine solution (AUS) during degradation of a biodegradable ureteral stent loaded with ketoprofen was evaluated. According to the kinetics results these systems have shown to be very promising for the release ketoprofen in the first 72 h, which is the necessary time for anti-inflammatory delivery after the surgical procedure. The in vitro release studied revealed an influence of the temperature on the impregnation yield, with a higher impregnation yield at 40°C. Higher yields were also obtained for gellan gum-based stents. The non-cytotoxicity characteristic of the developed ketoprofen-eluting biodegradable ureteral stents was evaluated in L929 cell line by MTS assay which demonstrated the feasibility of this product as a medical device.

Quraishi, Sakeena, Marta Martins, Alexandre A. Barros, Pavel Gurikov, S. P. Raman, Irina Smirnova, Ana Rita C. Duarte, and Rui L. Reis. "{Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering}." Journal of Supercritical Fluids. 105 (2015): 1-8. AbstractWebsite

This paper presents a novel approach toward the production of hybrid alginate–lignin aerogels. The key idea of the approach is to employ pressurized carbon dioxide for gelation. Exposure of alginate and lignin aqueous alkali solution containing calcium carbonate to CO2at 4.5 MPa resulted in a hydrogel formation. Various lignin and CaCO3concentrations were studied. Stable hydrogels could be formed up to 2:1 (w/w) alginate-to-lignin ratio (1.5 wt{%} overall biopolymer concentration). Upon substitution of water with ethanol, gels were dried in supercritical CO2to produce aerogels. Aerogels with bulk density in the range 0.03–0.07 g/cm3, surface area up to 564 m2/g and pore volume up to 7.2 cm3/g were obtained. To introduce macroporosity, the CO2induced gelation was supplemented with rapid depressurization (foaming process). Macroporosity up to 31.3 ± 1.9{%} with interconnectivity up to 33.2 ± 8.3{%} could be achieved at depressurization rate of 3 MPa/min as assessed by micro-CT. Young's modulus of alginate–lignin aerogels was measured in both dry and wet states. Cell studies revealed that alginate–lignin aerogels are non-cytotoxic and feature good cell adhesion making them attractive candidates for a wide range of applications including tissue engineering and regenerative medicine.

Conchinha, Cristina, João Vilhete Viegas D’Abreu, and João Correia de Freitas. "{PERCEPÇÃO} {DOS} {PROFESSORES} {PORTUGUESES} {SOBRE} {A} {ROBÓTICA} {EDUCATIVA} {APLICADA} À{S} {NECESSIDADES} {EDUCATIVAS} {ESPECIAIS}." Challenges 2015 (2015): 52. Abstract
n/a
Martins, Marta, Alexandre A. Barros, Sakeena Quraishi, Pavel Gurikov, S. P. Raman, Irina Smirnova, Ana Rita C. Duarte, and Rui L. Reis. "{Preparation of macroporous alginate-based aerogels for biomedical applications}." Journal of Supercritical Fluids (2015). AbstractWebsite

Aerogels are a special class of ultra-light porous materials with growing interest in biomedical applications due to their open pore structure and high surface area. However, they usually lack macroporosity, while mesoporosity is typically high. In this work, carbon dioxide induced gelation followed by expansion of the dissolved CO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater} was performed to produce hybrid calcium-crosslinked alginate-starch hydrogels with dual meso- and macroporosity. The hydrogels were subjected to solvent exchange and supercritical drying to obtain aerogels. Significant increase in macroporosity from 2 to 25{%} was achieved by increasing expansion rate from 0.1 to 30 bar/min with retaining mesoporosity (BET surface and BJH pore volume in the range 183-544m{\textless}sup{\textgreater}2{\textless}/sup{\textgreater}/g and 2.0-6.8cm{\textless}sup{\textgreater}3{\textless}/sup{\textgreater}/g, respectively). In vitro bioactivity studies showed that the alginate-starch aerogels are bioactive, i.e. they form hydroxyapatite crystals when immersed in a simulated body fluid solution. Bioactivity is attributed to the presence of calcium in the matrix. The assessment of the biological performance showed that the aerogels do not present a cytotoxic effect and the cells are able to colonize and grow on their surface. Results presented in this work provide a good indication of the potential of the alginate-starch aerogels in biomedical applications, particularly for bone regeneration.

Barros, Alexandre A., Ivo M. Aroso, Tiago H. Silva, João F. Mano, Ana Rita C. Duarte, and Rui L. Reis. "{Water and carbon dioxide: Green solvents for the extraction of collagen/gelatin from marine sponges}." ACS Sustainable Chemistry and Engineering. 3 (2015): 254-260. Abstract

Marine sponges are extremely rich in natural products and are considered a promising biological resource. The major objective of this work is to couple a green extraction process with a natural origin raw material to obtain sponge origin collagen/gelatin for biomedical applications. Marine sponge collagen has unique physicochemical properties, but its application is hindered by the lack of availability due to inefficient extraction methodologies. Traditional extraction methods are time consuming as they involve several operating steps and large amounts of solvents. In this work, we propose a new extraction methodology under mild operating conditions in which water is acidified with carbon dioxide (CO2) to promote the extraction of collagen/gelatin from different marine sponge species. An extraction yield of approximately 50{%} of collagen/gelatin was achieved. The results of Fourier transformed infrared spectroscopy (FTIR), circular dichroism (CD), and differential scanning calorimetry (DSC) spectra suggest a mixture of collagen/gelatin with high purity, and the analysis of the amino acid composition has shown similarities with collagen from other marine sources. Additionally, in vitro cytotoxicity studies did not demonstrate any toxicity effects for three of the extracts.

2014
Fliedel, Christophe, Gilles Schnee, Teresa Aviles, and Samuel Dagorne. "{Group 13 metal (Al, Ga, In, Tl) complexes supported by heteroatom-bonded carbene ligands}." {COORDINATION CHEMISTRY REVIEWS}. {275} (2014): {63-86}. Abstract

{The present contribution comprehensively reviews the synthesis, structural characterization and current applications of group 13 metal complexes supported by heteroatom-bonded carbene ligands. Detailed structural analysis and comparison of the structure/reactivity trends of group 13 metal carbene species constitute the primary purpose of the present contribution. The current use and applications of this class of compounds are also discussed. In general, such adducts have been thoroughly characterized (both in solution or in the solid state) and structural data, frequently supported by theoretical investigations, provided insight into the stability/reactivity of the adducts formed. While essentially dominated by Arduengo-type NHC adducts, N- and P-bonded cyclic and acyclic carbene complexes of Al, Ga and In have also been recently described, including the recent use of ``carbon(0) ligands{''}. In general, recent developments in carbene group 13 species exploit the improved stability of the resulting metal complexes for either the isolation/characterization of unprecedented structural motifs or the production of robust group 13 metal reagents subsequently used for organic substrates functionalization or in catalysis. (C) 2014 Elsevier B.V. All rights reserved.}

Lopes, Joao Sollari, Paula Rodrigues, Suani T. R. Pinho, Roberto F. S. Andrade, Raquel Duarte, and Gabriela M. M. Gomes. "Interpreting measures of tuberculosis transmission: a case study on the Portuguese population." BMC INFECTIOUS DISEASES. 14 (2014). Abstract

n/a

Fliedel, Christophe, Samir Mameri, Samuel Dagorne, and Teresa Aviles. "{Controlled ring-opening polymerization of trimethylene carbonate and access to PTMC-PLA block copolymers mediated by well-defined N-heterocyclic carbene zinc alkoxides}." {APPLIED ORGANOMETALLIC CHEMISTRY}. {28} (2014): {504-511}. Abstract

{Four novel Zinc-NHC alkyl/alkoxide/chloride complexes (4, 5, 9 and 9) were readily prepared and fully characterized, including X-ray diffraction crystallography for 5 and 9. The reaction of N-methyl-N-butyl imidazolium chloride (3.HCl) with ZnEt2 (2 equiv.) afforded the corresponding {[}(CNHC)ZnCl(Et)] complex (4) via a protonolysis reaction, as deduced from NMR data. The alcoholysis of 4 with BnOH led to quantitative formation of the dinuclear Zn(II) alkoxide species {[}(CNHC)ZnCl(OBn)]2 (5), as confirmed by X-ray diffraction analysis. The NMR data are in agreement with species 5 retaining its dimeric structure in solution at room temperature. The protonolysis reaction of N-(2,6-diisopropylphenyl)-N-ethyl methyl ether imidazolium chloride (8.HCl) with ZnEt2 (2 equiv.) yielded the {[}(CNHC)ZnCl(Et)] species 9. The latter was found to be reactive with CH2Cl2 in solution and to cleanly convert to the corresponding Zn(II) dichloride {[}(CNHC)ZnCl2]2 (9), whose molecular structure was also elucidated using X-ray diffractometry. Unlike Zn(II)-NHC alkoxide species 1 and 2, which contain a NHC flanked with an additional N-functional group (i.e. thioether and ether, respectively), the Zn(II) alkoxide species 5 incorporates a monodentate NHC ligand. The Zn(II) complexes 1, 2 and 5 were tested in the ring-opening polymerization (ROP) of trimethylene carbonate (TMC). All three species are effective initiators for the controlled ROP of trimethylene carbonate, resulting in the production of narrow disperse PTMC material. Initiator 1 (incorporating a thioether moiety) was found to perform best in the ROP of TMC. Notably, the latter also readily undergoes the sequential ROP of TMC and rac-LA in the presence of a chain-transfer agent, leading to well-defined and high-molecular-weight PTMC/PLA block copolymers. Copyright (c) 2014 John Wiley & Sons, Ltd.}

Guimarães, D., J. P. Santos, M. L. Carvalho, M. S. Diniz, B. House, and V. M. Miller. "Analytical evidence of heterogeneous lead accumulation in the hypothalamic defence area and nucleus tractus solitarius." NeuroToxicology. 44 (2014): 91-97. AbstractWebsite

Lead is a potent toxicant associated with adverse cardiovascular effects and hypertension in children. Yet, few studies have determined if autonomic dysfunction associated with lead exposure involves brain regions which regulate autonomic responses. Central autonomic nuclei such as the nucleus tractus solitarius (NTS) and hypothalamic defence area (HDA) may be particularly sensitive to lead infiltration because they are adjacent to ventricles and areas with semi-permeable blood-brain-barriers. To understand if autonomic nuclei are sensitive to lead accumulation Wistar rats were exposed to lead from the gestational period and lead levels were quantified in brain regions that regulate arterial pressure: the NTS and the HDA. Energy dispersive X-ray fluorescence (EDXRF) was used to quantify total brain lead levels and revealed no differences between exposed and control tissues; measured values were close to the detection limit (2μg/g). Electrothermal atomic absorption spectrometry (ETAAS) was also used, which has a greater sensitivity, to quantify lead. There was ∼2.1μg/g lead in the NTS and ∼3.1μg/g lead in the HDA of exposed rats, and no lead in the control rats. There were greater lead levels in the HDA (∼50%) as compared with the NTS. Pathology studies revealed more prominent lead granules in the HDA as compared with the NTS. Increased microglia and astrocyte activation was also noted in the NTS of lead exposed rats as compared with the HDA. Regional differences in neuro-inflammatory responses likely contribute to heterogeneous lead accumulation, with enhanced clearance of lead in the NTS. Future studies will resolve the mechanisms underpinning tissue-specific lead accumulation.

Guimarães, D., J. P. Santos, M. L. Carvalho, M. S. Diniz, B. House, and V. M. Miller. "Analytical evidence of heterogeneous lead accumulation in the hypothalamic defence area and nucleus tractus solitarius." NeuroToxicology. 44 (2014): 91-97. AbstractWebsite

Lead is a potent toxicant associated with adverse cardiovascular effects and hypertension in children. Yet, few studies have determined if autonomic dysfunction associated with lead exposure involves brain regions which regulate autonomic responses. Central autonomic nuclei such as the nucleus tractus solitarius (NTS) and hypothalamic defence area (HDA) may be particularly sensitive to lead infiltration because they are adjacent to ventricles and areas with semi-permeable blood-brain-barriers. To understand if autonomic nuclei are sensitive to lead accumulation Wistar rats were exposed to lead from the gestational period and lead levels were quantified in brain regions that regulate arterial pressure: the NTS and the HDA. Energy dispersive X-ray fluorescence (EDXRF) was used to quantify total brain lead levels and revealed no differences between exposed and control tissues; measured values were close to the detection limit (2μg/g). Electrothermal atomic absorption spectrometry (ETAAS) was also used, which has a greater sensitivity, to quantify lead. There was ∼2.1μg/g lead in the NTS and ∼3.1μg/g lead in the HDA of exposed rats, and no lead in the control rats. There were greater lead levels in the HDA (∼50%) as compared with the NTS. Pathology studies revealed more prominent lead granules in the HDA as compared with the NTS. Increased microglia and astrocyte activation was also noted in the NTS of lead exposed rats as compared with the HDA. Regional differences in neuro-inflammatory responses likely contribute to heterogeneous lead accumulation, with enhanced clearance of lead in the NTS. Future studies will resolve the mechanisms underpinning tissue-specific lead accumulation.

Saponaro, A., S. R. Pauleta, F. Cantini, M. Matzapetakis, C. Hammann, C. Donadoni, L. Hu, G. Thiel, L. Banci, B. Santoro, and A. Moroni. "Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function." Proc Natl Acad Sci U S A. 111 (2014): 14577-82. AbstractWebsite

cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD.

Santos, I., M. S. Diniz, M. L. Carvalho, and J. P. Santos. "Assessment of Essential Elements and Heavy Metals Content on Mytilus galloprovincialis from River Tagus Estuary." Biological Trace Element Research (2014). AbstractWebsite

Trace elemental content was analysed in edible tissues of Mytilus galloprovincialis collected in five different sampling areas near the mouth of river Tagus estuary in Lisbon. The concentrations of essential elements (S, K, Ca, Fe, Cu, Zn, As, Br and Sr) were determined by energy-dispersive X-ray fluorescence (EDXRF) spectrometry, while toxic elements (Cr, Cd, Hg, Se and Pb) were measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The results show that the essential elements K and S are present at the highest concentrations in all the studied samples reaching 2,920 and 4,520 μg g(-1) (fresh weight), respectively. The highest levels of heavy metals found were in two areas close to the city for Pb and Cd, but below the maximum allowed values.

Rahangdale, H. V., M. Guerra, P. K. Das, S. De, J. P. Santos, D. Mitra, and S. Saha. "Determination of subshell-resolved <span class="aps-inline-formula"><math><mi>L</mi></math></span>-shell-ionization cross sections of gold induced by 15–40-keV electrons." Physical Review A. 89 (2014): 052708. AbstractWebsite
n/a
Moura, I., C. Carreira, S. Pauleta, R. F. Nunes, J. J. Moura, S. Ramos, S. Dell'acqua, and O. Einsle. "INSIGHTS INTO THE CATALYTICCYCLE OF Pseudomonas nautica NITROUS OXIDE REDUCTASE." Journal of Biological Inorganic Chemistry. Vol. 19. J Biol Inorg Chem, 19. 2014. S104. Abstract
n/a
Rahangdale, H. V., M. Guerra, P. K. Das, S. De, J. P. Santos, D. Mitra, and S. Saha. "Determination of subshell-resolved <span class="aps-inline-formula"><math><mi>L</mi></math></span>-shell-ionization cross sections of gold induced by 15–40-keV electrons." Physical Review A. 89 (2014): 052708. AbstractWebsite
n/a
Altstadt, S. G., et al. "{$^{13,14}$B(n, $\gamma$) via Coulomb Dissociation for Nucleosynthesis towards the r-Process}." Nuclear Data Sheets. 120 (2014): 197-200. AbstractWebsite
n/a
Johnston, E. M., S. Dell'acqua, S. Ramos, S. R. Pauleta, I. Moura, and E. I. Solomon. "Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase." J Am Chem Soc. 136 (2014): 614-7. AbstractWebsite

N2OR has been found to have two structural forms of its tetranuclear copper active site, the 4CuS Cu(Z)* form and the 4Cu2S Cu(Z) form. EPR, resonance Raman, and MCD spectroscopies have been used to determine the redox states of these sites under different reductant conditions, showing that the Cu(Z)* site accesses the 1-hole and fully reduced redox states, while the Cu(Z) site accesses the 2-hole and 1-hole redox states. Single-turnover reactions of N2OR for Cu(Z) and Cu(Z)* poised in these redox states and steady-state turnover assays with different proportions of Cu(Z) and Cu(Z)* show that only fully reduced Cu(Z)* is catalytically competent in rapid turnover with N2O.

Silva, João A., Tiago M. Vale, Ricardo J. Dias, Hervé Paulino, and João M. Lourenço. "Supporting Partial Data Replication in Distributed Transactional Memory." Proceedings of Joint Euro-TM/MEDIAN Workshop on Dependable Multicore and Transactional Memory Systems. DMTM 2014. Vienna, Austria 2014. Abstractdmtm14-jsilva.pdf

n/a