
Supporting Partial Data Replication in Distributed
Transactional Memory

[Extended Abstract]

João A. Silva, Tiago M. Vale, Ricardo J. Dias, Hervé Paulino, and João M. Lourenço
CITI — Departamento de Informática

Universidade Nova de Lisboa, Portugal
{jaa.silva,t.vale,ricardo.dias}@campus.fct.unl.pt {herve.paulino,joao.lourenco}@fct.unl.pt

1. INTRODUCTION
Transactional memory (TM) [8] is consistently making its

way into mainstream programming, being already deployed
by some of the major CPU manufacturers [11] and in several
reference compilers [5]. To cope with requirements such as
scalability and dependability, recent proposals explore the
combination of TM with data replication, bringing TM to
distributed environments — conceiving distributed transac-
tional memory (DTM).

However, current DTM frameworks support only full data
replication [2, 10]. They provide the best possible level of
tolerance to data loss, but limit the system’s total storage
capacity to the capacity of the node with fewer resources,
and require coordination among all the system’s nodes, an
approach bound to hamper scalability in large scale systems.

In this context, a partial data replication [1] strategy can
help to lessen these shortcomings. Each node replicates only
a subset of the system’s dataset, an approach that aims at
combining the best of data distribution and full replication,
while trying to attenuate their disadvantages. The key idea
is to allow the dataset to be distributed among the partici-
pating nodes and to decrease the number of nodes that have
to participate in a transaction’s confirmation, as any given
transaction only has to be confirmed by the nodes that repli-
cate the data items in its read and write sets. By distributing
the data and reducing the coordination cost among nodes,
partial data replication leverages the system’s scalability.

Although this strategy has already been explored by the
distributed databases research field [6], it is yet to be ad-
dressed in the context of (D)TM. More specifically, par-
tial data replication has been broadly applied in key-value
stores [7], and even though these work on in-memory data
and support transactions, they present significant differences
when compared with DTM systems for general purpose pro-
gramming languages.

To this extent, we propose PARdstm, to the best of our
knowledge, the first DTM framework to include support for
partial data replication. As such, the contributions of this
work are: a reasoning on how partial data replication shall
be supported in general purpose programming languages
(Java, in particular), and a modular software framework
that embeds such principles to provide a highly expressive
and non-intrusive programming API. Initial experimental
results give evidence that our approach may enhance scal-
ability in large scale systems, when compared to full data
replication. An ongoing comprehensive study will allow us
to assess in which contexts of use (workloads, number of

nodes, etc.) partial data replication may be an effective al-
ternative.

2. SUPPORTING PARTIAL DATA REPLICA-
TION IN A GENERAL PURPOSE PRO-
GRAMMING LANGUAGE

Supporting partial data replication in general purpose pro-
gramming languages may build upon the cumulative knowl-
edge of applying such techniques to (in-memory) databases.
However, the expressiveness of programming languages is
much higher than that of database query languages, spe-
cially compared to the put/get interface of key-value stores.
As such, addressing partial data replication in this new con-
text raises an extra set of challenges, such as (1) what data
should be partially replicated; (2) how to express that repli-
cation ”level” in a general purpose programming language;
and (3) how to partially replicate graphs of objects. Or-
thogonal to these are the technical challenges raised by the
architectural and functional requirements for a runtime sys-
tem to support partial data replication.

In partially replicated databases, the tables are present in
every node, i.e., fully replicated, while the data they contain
is partitioned among the nodes. The same approach is also
applied to key-value stores, where data organizing structures
exist in every node and just the hard data is partially repli-
cated. In sum, partial replication is, to some extent, always
combined with full replication. In our opinion, the same rea-
soning should be applied to DTM in order to mitigate the
overhead of remote read operations. A pragmatic example
is the list. If we imagine that all the nodes are partially
replicated, the simple task of traversing the list would entail
a possibly remote read operation for each iterated node. On
the other hand, if we just partially replicate the hard data
stored in each node, the number of remote read operations
resultant from the list’s traversal would be limited by the
hard data we really want to inspect. Thus, our answer to
challenge (1) is to fully replicate the (data) structures (small
or frequently accessed data) and to partially replicate the
hard data (big or infrequently accessed data).

We want to keep the public API as simple as possible,
while allowing for a high degree of expressiveness. Accord-
ingly, our answer to challenge (2) is to grant the program-
mer with the power to express what data should be par-
tially replicated. By default, everything is assumed to be
fully replicated. Further, we added a Java annotation —
@Partial — to be applied in class’ fields, expressing that



everything downstream of this field, in the heap objects’
graph, should be replicated in a single group, i.e., partially
replicated.

Regarding challenge (3), we distribute and replicate the
graphs of objects associating distribution metadata with
each object. These metadata enable the system to know
in which nodes the objects are replicated and to manage the
references indirections. To ensure the semantics of @Partial,
cycles in the graph may not include both full and partially
replicated objects.

Additionally, the runtime system needs to be aware of
which nodes belong to which groups and which data items
are associated to which groups. These two problems are
taken care of by two modules: the group and data partition-
ers1, respectively. Hence, replicated data items are identi-
fiable in the system by an unique identifier (to distinguish
between different objects) and the identifier of the group
where they are replicated (to be able to request a copy, if
needed).

The developed framework is highly modular, allows for
multiple implementations of the group and data partitioners,
and of the protocol for transactions’ confirmation. Concern-
ing the latter, the proof-of-concept implementation resorts
to an implementation of SCORe [4].

3. EXPERIMENTAL RESULTS
Our initial experimental results give evidence of some nice

properties, namely2: the system uses less memory per node,
since nodes do not replicate the entire system’s dataset; the
system has a fair workload distribution, since each node con-
tributes roughly with the same amount of work for the sys-
tem’s overall throughput; and the system scales in the pres-
ence of workloads with large amounts of transactions that
modify partially replicated data, this relates to the proto-
col that we use for transactions’ confirmation, since it was
specially tailored for pure partially replicated environments
(and not for environments using a combination of both full
and partial data replication).

We also verified that the system presents a considerable
overhead in read operations, both for local and remote reads.
For local reads, the problem is related with the protocol we
use, since it requires additional checks (and in some cases
busy waiting). For remote reads, the problem is the in-
evitable cost of distribution — the network (this is not the
case in full replication, where all read operations are local).

To evaluate our system, we used some well known bench-
marks such as Vacation from the STAMP suite [3], TPC-
W [9] and a Red-Black Tree microbenchmark. In Figure 1,
we show the result of running an adapted version of the
Red-Black Tree microbenchmark. This version of the mi-
crobenchmark was adapted so that write transactions only
modify partially replicated data (in this case, it only modi-
fies the data stored in the tree’s nodes).

4. CONCLUDING REMARKS
To conclude, we have a working prototype of a DTM

framework — PARdstm — supporting both full and par-
tial data replication. Its modularity and non-intrusive API

1We implemented some basic strategies for both compo-
nents.
2During all the evaluation, we compared partial replication
against full replication using our framework, in both cases.

 5

 10

 15

 20

 25

 30

12451020

T
ra

n
s
a

c
ti
o

n
s
 x

 1
0

3
/s

e
c
o

n
d

Replication factor

Full
Partial

Figure 1: System’s throughput on the Adapted
Red-Black Tree microbenchmark (using JGroups,
20 nodes, 1 thread per node and 10% writes).

allow the easy implementation of several of it components.
Ongoing work encompasses framework optimizations, ca-

ching of remote objects and an extensive comprehensive
study that will allow us to accurately assess in which con-
texts of use (workloads, number of machines, etc.) our ap-
proach may be an effective alternative.

5. REFERENCES
[1] G. Alonso. Partial database replication and group

communication primitives (extended abstract). In
ERSADS, 1997.

[2] N. Carvalho, P. Romano, and L. Rodrigues. A generic
framework for replicated software transactional
memories. In NCA, 2011.

[3] C. C. Minh, J. Chung, C. Kozyrakis, et al. Stamp:
Stanford transactional applications for
multiprocessing. In IISWC, 2008.

[4] S. Peluso, P. Romano, and F. Quaglia. Score: A
scalable one-copy serializable partial replication
protocol. In Middleware. 2012.

[5] M. Schindewolf, A. Cohen, W. Karl, et al. Towards
transactional memory support for gcc. In GCC
Research Opportunities Workshop, 2009.

[6] N. Schiper, R. Schmidt, and F. Pedone. Optimistic
algorithms for partial database replication. In
Principles of Distributed Systems, 2006.

[7] N. Schiper, P. Sutra, et al. P-store: Genuine partial
replication in wide area networks. In SRDS, 2010.

[8] N. Shavit and D. Touitou. Software transactional
memory. In PODC, 1995.

[9] Transaction Processing Performance Counsil. TPC
Benchmark W. http://www.tpc.org/tpcw, May
2013.

[10] T. M. Vale, R. J. Dias, and J. M. Lourenço. Uma
infraestrutura para suporte de memória transacional
distribúıda. In INForum Simpósio de Informática,
2012.

[11] A. Wang, M. Gaudet, P. Wu, et al. Evaluation of blue
gene/q hardware support for transactional memories.
In PACT, 2012.

http://www.tpc.org/tpcw

	Introduction
	Supporting Partial Data Replication in a General Purpose Programming Language
	Experimental Results
	Concluding Remarks
	References

