Publications

Export 37 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
Dias, R. J., J. M. Lourenço, and G. Cunha, "Developing libraries using software transactional memory", Comput. Sci. Inf. Syst., vol. 5, issue 2, no. 2, pp. 103–117, 2008. Abstractcomsis_final.pdf

Software transactional memory is a promising programming model that adapts many concepts borrowed from the databases world to control concurrent accesses to main memory (RAM). This paper discusses how to support revertible operations, such as memory allocation and release, within software libraries that will be used in software memory transactional contexts. The proposal is based in the extension of the transaction life cycle state diagram with new states associated to the execution of user-defined handlers. The proposed approach is evaluated in terms of functionality and performance by way of a use case study and performance tests. Results demonstrate that the proposal and its current implementation are flexible, generic and efficient

Dias, R. J., J. Lourenço, and G. Cunha, "Developing Libraries Using Software Transactional Memory", CoRTA 2008: Proceedings of the Conference on Compilers, Related Technologies and Applications, Bragança, Portugal, Instituto Politécnico de Bragança - ESTG, 2008. Abstractcorta_2008.pdf

Software transactional memory (STM) is a promising programming model that adapts many concepts borrowed from the databases world to control concurrent accesses to main memory (RAM) locations. This paper aims at discussing how to support apparently irreversible operations within a memory transaction.

Dikaiakos, M., O. Rana, S. Ur, and J. M. Lourenço, "Topic 1: Support Tools and Environments", Euro-Par 2008 Parallel Processing, vol. 5168, Berlin, Heidelberg, Springer-Verlag, pp. 1–2, 2008. Abstract

The spread of systems that provide parallelism either «in-the-large» (grid infrastructures, clusters) or «in-the-small» (multi-core chips), creates new opportunities for exploiting parallelism in a wider spectrum of application domains. However, the increasing complexity of parallel and distributed platforms renders the programming, the use, and the management of these systems a costly endeavor that requires advanced expertise and skills. Therefore, there is an increasing need for powerful support tools and environments that will help end-users, application programmers, software engineers and system administrators to manage the increasing complexity of parallel and distributed platforms.

2003
Duarte, V., J. M. Lourenço, and J. C. Cunha, "Supporting on-line distributed monitoring and debugging", On-Line Monitoring Systems and Computer Tool Interoperability, Commack, NY, USA, Nova Science Publishers, Inc., pp. 43–59, 2003. Abstractpdcp.pdf

Monitoring systems have traditionally been developed with rigid objectives and functionalities, and tied to specific languages, libraries and run-time environments. There is a need for more flexible monitoring systems which can be easily adapted to distinct requirements. On-line monitoring has been considered as increasingly important for observation and control of a distributed application. In this paper we discuss monitoring interfaces and architectures which support more extensible monitoring and control services. We describe our work on the development of a distributed monitoring infrastructure, and illustrate how it eases the implementation of a complex distributed debugging architecture. We also discuss several issues concerning support for tool interoperability and illustrate how the cooperation among multiple concurrent tools can ease the task of distributed debugging.

2001
Cunha, J. C., J. M. Lourenço, and V. Duarte, "The DDBG distributed debugger", Parallel Program Development for Cluster Computing, Commack, NY, USA, Nova Science Publishers, Inc., pp. 279–290, 2001. Abstractcap13.pdf

n/a

Cunha, J. C., J. M. Lourenço, and V. Duarte, "Debugging of parallel and distributed programs", Parallel Program Development for Cluster Computing, Commack, NY, USA, Nova Science Publishers, Inc., pp. 97–129, 2001. Abstractcap03.pdf

n/a

Duarte Vitor, Lourenço João M., C. J. C., "Supporting On-line Distributed Monitoring and Debugging", Parallel and Distributed Computing Practices, vol. 4, no. 3, pp. 43–59, 2001. Abstractpdcp.pdfWebsite

Monitoring systems have traditionally been developed with rigid objectives and functionalities, and tied to specific languages, libraries and run-time environments. There is a need for more flexible monitoring systems which can be easily adapted to distinct requirements. On-line monitoring has been considered as increasingly important for observation and control of a distributed application. In this paper we discuss monitoring interfaces and architectures which support more extensible monitoring and control services. We describe our work on the development of a distributed monitoring infrastructure, and illustrate how it eases the implementation of a complex distributed debugging architecture. We also discuss several issues concerning support for tool interoperability and illustrate how the cooperation among multiple concurrent tools can ease the task of distributed debugging.

1999
Cunha, J. C., P. D. Medeiros, V. Duarte, J. Lourenço, and C. Gomes, "An Experience in Building a Parallel and Distributed Problem-Solving Environment", Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'99): CSREA Press, pp. 1804–1809, 1999. Abstractpdpta99.pdf

We describe our experimentation with the design and implementation of specific environments, consisting of heterogeneous computational, visualization, and control components. We illustrate the approach with the design of a problem–solving environment supporting the execution of genetic algorithms. We describe a prototype supporting parallel execution, visualization, and steering. A life cycle for the development of applications based on genetic algorithms is proposed.

1998
Cunha, J. C., P. D. Medeiros, J. M. Lourenço, V. Duarte, J. Vieira, B. Moscão, D. Pereira, and R. Vaz, "The DOTPAR Project: Towards a Framework Supporting Domain Oriented Tools for Parallel and Distributed Processing", Proceedings of the International Conference and Exhibition on High-Performance Computing and Networking (HPCN'98), London, UK, Springer-Verlag, pp. 952–954, 1998. Abstractdotpar98.pdf

We discuss the problem of building domain oriented environments by a composition of heterogeneous application components and tools. We describe several individual tools that support such environments, namely a distributed monitoring and control tool (DAMS), a process-based distributed debugger (PDBG) and a heterogeneous interconnection model (PHIS). We discuss our experience with the development of a Problem Oriented Environment in the domain of genetic algorithms, obtained by a composition of heterogeneous tools and application components.

Cunha, J. C., J. M. Lourenço, and V. Duarte, "Tool Integration Issues for Parallel and Distributed Debugging", Proceedings of the 3rd SEIHPC Workshop, Braga, Portugal, University of Westminster, 1998. Abstractseihpc98.pdf

This paper describes our experience with the design and implementation of a distributed debugger for C/PVM programs within the scope of the SEPP and HPCTI Copernicus projects. These projects aimed at the development of an integrated parallel software engineering environment based on a high-level graphical parallel programming model (GRAPNEL) and a set of associated tools supporting graphical edition, compilation, simulated and real parallel execution, testing, debugging, performance monitoring, mapping, and load balancing. We discuss how the development of the debugging tool was strongly influenced by the requirements posed by other tools in the environment, namely support for high-level graphical debugging of GRAPNEL programs, and support for the integration of static and dynamic analysis tools. We describe the functionalities of the DDBG debugger and its internal architecture, and discuss its integration with two separate tools in the SEPP/HPCTI environment: the GRED graphical editor for GRAPNEL programs, and the STEPS testing tool for C/PVM programs.

Cunha, J. C., J. Lourenço, and V. Duarte, "Using DDBG to Support Testing and High-level Debugging Interfaces", Computers and Artificial Intelligence, vol. 17, no. 5, 1998. Abstractcaij98.pdfWebsite

This paper describes our experience with the design and implementation of a distributed debugger for C/PVM programs within the scope of the SEPP and HPCTI Copernicus projects. These projects aimed at the development of an integrated parallel software engineering environment based on a high-level graphical parallel programming model (GRAPNEL) and a set of associated tools supporting graphical edition, compilation, simulated and real parallel execution, testing, debugging, performance monitoring, mapping, and load balancing. We discuss how the development of the debugging tool was strongly influenced by the requirements posed by other tools in the environment, namely support for high-level graphical debugging of GRAPNEL programs, and support for the integration of static and dynamic analysis tools. We describe the functionalities of the DDBG debugger and its internal architecture, and discuss its integration with two separate tools in the SEPP/HPCTI environment: the GRED graphical editor for GRAPNEL programs, and the STEPS testing tool for C/PVM programs.

1997
Kacsuk, P., J. C. Cunha, G. Dózsa, J. M. Lourenço, T. Fadgyas, and T. Antão, "A graphical development and debugging environment for parallel programs", Parallel Comput., vol. 22, Amsterdam, The Netherlands, The Netherlands, Elsevier Science Publishers B. V., pp. 1747–1770, 1997. Abstractpar-comp97.pdfWebsite

To provide high-level graphical support for PVM (Parallel Virtual Machine) based program development, a complex programming environment (GRADE) is being developed. GRADE currently provides tools to construct, execute, debug, monitor and visualise message-passing parallel programs. It offers high-level graphical programming abstraction mechanism to construct parallel applications by introducing a new graphical language called GRAPNEL. GRADE also provides the programmer with the same graphical user interface during the program design and debugging stages. A distributed debugging engine (DDBG) assists the user in debugging GRAPNEL programs on distributed memory computer architectures. Tape/PVM and PROVE support the performance monitoring and visualization of parallel programs developed in the GRADE environment.