Publications

Export 14 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Pinheiro, A., A. Ruivo, M. Ferro, J. V. Pinto, J. Deuermeier, T. Mateus, A. Santa, M. J. Mendes, R. Martins, S. Gago, C. A. T. Laia, and Á. Hugo, {Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics}, , 2023. Abstract
n/a
2022
Correia, R., J. Deuermeier, M. R. Correia, J. {Vaz Pinto}, J. Coelho, E. Fortunato, and R. Martins, "{Biocompatible Parylene-C Laser-Induced Graphene Electrodes for Microsupercapacitor Applications}", ACS Applied Materials {&} Interfaces, vol. 14, no. 41: American Chemical Society, pp. 46427–46438, oct, 2022. AbstractWebsite
n/a
Firmino, R., E. Carlos, J. V. Pinto, J. Deuermeier, R. Martins, E. Fortunato, P. Barquinha, and R. Branquinho, "{Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductors}", Nanomaterials, vol. 12, no. 13, pp. 2167, jun, 2022. AbstractWebsite

{\textless}p{\textgreater}Indium oxide (In2O3)-based transparent conducting oxides (TCOs) have been widely used and studied for a variety of applications, such as optoelectronic devices. However, some of the more promising dopants (zirconium, hafnium, and tantalum) for this oxide have not received much attention, as studies have mainly focused on tin and zinc, and even fewer have been explored by solution processes. This work focuses on developing solution-combustion-processed hafnium (Hf)-doped In2O3 thin films and evaluating different annealing parameters on TCO's properties using a low environmental impact solvent. Optimized TCOs were achieved for 0.5 M{%} Hf-doped In2O3 when produced at 400 °C, showing high transparency in the visible range of the spectrum, a bulk resistivity of 5.73 × 10−2 $Ømega$.cm, a mobility of 6.65 cm2/V.s, and a carrier concentration of 1.72 × 1019 cm−3. Then, these results were improved by using rapid thermal annealing (RTA) for 10 min at 600 °C, reaching a bulk resistivity of 3.95 × 10 −3 $Ømega$.cm, a mobility of 21 cm2/V.s, and a carrier concentration of 7.98 × 1019 cm−3, in air. The present work brings solution-based TCOs a step closer to low-cost optoelectronic applications.{\textless}/p{\textgreater}

2020
Centeno, P., M. F. Alexandre, M. Chapa, J. V. Pinto, J. Deuermeier, T. Mateus, E. Fortunato, R. Martins, H. Águas, and M. J. Mendes, {Self-Cleaned Photonic-Enhanced Solar Cells with Nanostructured Parylene-C}, , vol. 2000264, pp. 1–9, 2020. Abstract

Abstract Photonic front-coatings with self-cleaning properties are presented as means to enhance the efficiency and outdoor performance of thin-film solar cells, via optical enhancement while simultaneously minimizing soiling-related losses. This is achieved by structuring parylene-C transparent encapsulants using a low-cost and highly-scalable colloidal-lithography methodology. As a result, superhydrophobic surfaces with broadband light-trapping properties are developed. The optimized parylene coatings show remarkably high water contact angles of up to 165.6° and extremely low adhesion, allowing effective surface self-cleaning. The controlled nano/micro-structuring of the surface features also generates strong anti-reflection and light scattering effects, corroborated by numeric electromagnetic modeling, which lead to pronounced photocurrent enhancement along the UV?vis?IR range. The impact of these photonic-structured encapsulants is demonstrated on nanocrystalline silicon solar cells, that show short-circuit current density gains of up to 23.6%, relative to planar reference cells. Furthermore, the improvement of the devices' angular response enables an enhancement of up to 35.2% in the average daily power generation.

2017
Goswami, S., S. Nandy, A. N. Banerjee, A. Kiazadeh, G. R. Dillip, J. V. Pinto, S. W. Joo, R. Martins, and E. Fortunato, "{“Electro-Typing” on a Carbon-Nanoparticles-Filled Polymeric Film using Conducting Atomic Force Microscopy}", Advanced Materials, vol. 29, no. 47, 2017. Abstract

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Next-generation electrical nanoimprinting of a polymeric data sheet based on charge trapping phenomena is reported here. Carbon nanoparticles (CNPs) (waste carbon product) are deployed into a polymeric matrix (polyaniline) (PANI) as a charge trapping layer. The data are recorded on the CNPs-filled polyaniline device layer by “electro-typing” under a voltage pulse (VET, from ±1 to ±7 V), which is applied to the device layer through a localized charge-injection method. The core idea of this device is to make an electrical image through the charge trapping mechanism, which can be “read” further by the subsequent electrical mapping. The density of stored charges at the carbon–polyaniline layer, near the metal/polymer interface, is found to depend on the voltage amplitude, i.e., the number of injected charge carriers. The relaxation of the stored charges is studied by different probe voltages and for different devices, depending on the percolation of the CNPs into the PANI. The polymeric data sheet retains the recorded data for more than 6 h, which can be refreshed or erased at will. Also, a write–read–erase–read cycle is performed for the smallest “bit” of stored information through a single contact between the probe and the device layer.

2016
Kardarian, K., D. Nunes, P. {Maria Sberna}, A. Ginsburg, D. A. Keller, J. {Vaz Pinto}, J. Deuermeier, A. Y. Anderson, A. Zaban, R. Martins, and E. Fortunato, "{Effect of Mg doping on Cu2O thin films and their behavior on the TiO2/Cu2O heterojunction solar cells}", Solar Energy Materials and Solar Cells, vol. 147, pp. 27–36, apr, 2016. AbstractWebsite

Abstract The present work shows the effect of magnesium doping on structural, optoelectrical and electrical properties of Cu2O thin films prepared by spray pyrolysis. The variation in the concentration of Mg shows significant impact on the final thin film properties, whereas the film doped with 0.5 at{%} of Mg exhibited major property improvements in comparison with the undoped thin film and among the other concentrations tested. This condition was further applied for the deposition of an absorber layer in a heterojunction solar cell array with a gradient in thicknesses of active layers to investigate the impact of changing thicknesses on the PV parameters of the solar cell. TiO2 was used as a window layer and the 0.5 at{%} Cu2O doped film as an absorber layer. The produced heterojunction solar cell array was further exposed to a rapid thermal annealing treatment. The I–V measurements show an open circuit voltage of up to 365 mV and a short circuit current density, which is dependent on absorber layer thickness, and reaches to a maximum value of 0.9 mA/cm2.

2015
Nunes, D., L. Santos, P. Duarte, A. Pimentel, J. V. Pinto, P. Barquinha, P. A. Carvalho, E. Fortunato, and R. Martins, "Room Temperature Synthesis of Cu2O Nanospheres: Optical Properties and Thermal Behavior", Microscopy and Microanalysis, vol. 21, issue 01, pp. 11, 2015. Abstract

The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals. FAU - Nunes, Daniela

2013
Figueiredo, V., J. V. Pinto, J. Deuermeier, R. Barros, E. Alves, R. Martins, and E. Fortunato, "p-Type CuxO Thin-Film Transistors Produced by Thermal Oxidation", Journal of Display Technology, vol. 9, issue 9, pp. 6, 2013. AbstractWebsite
n/a
Figueiredo, V., J. V. Pinto, J. Deuermeier, R. Barros, E. Alves, R. Martins, and E. Fortunato, "{p-Type Cu O Thin-Film Transistors Produced by Thermal Oxidation}", Journal of Display Technology, vol. 9, no. 9, pp. 735–740, 2013. Abstract

Thin-films of copper oxide Cu O were produced by thermal oxidation of metallic copper (Cu) at different tempera- tures (150–450 C). The films produced at temperatures of 200, 250 and 300 C showed high Hall motilities of 2.2, 1.9 and 1.6 cm V s , respectively. Single Cu O phases were obtained at 200 Cand its conversion toCuO starts at 250 C. For lower thick- nesses 40 nm, the films oxidized at 250 Cshowed a complete conversion to CuO phase. Successful thin-film transistors (TFTs) were produce by thermal oxidation of a 20 nm Cu film, obtaining p-type Cu O (at 200 C) and CuO (at 250 C) with On/Off ratios of 6 10 and 1 10 , respectively.

2012
Duarte, P., D. P. Ferreira, T. F. Lopes, J. V. Pinto, I. M. Fonseca, I. Ferreira Machado, and L. F. Vieira Ferreira, "DSM as a probe for the characterization of modified mesoporous silicas", Microporous and Mesoporous Materials, vol. 161, pp. 139-147, 2012. Abstract
n/a
2002
Raiola, F., P. Migliardi, G. Gyurky, M. Aliotta, A. Formicola, R. Bonetti, C. Broggini, L. Campajola, P. Corvisiero, H. Costantini, J. Cruz, A. D'Onofrio, Z. Fulop, G. Gervino, L. Gialanella, A. Guglielmetti, G. Imbriani, C. Gustavino, A. P. Jesus, M. Junker, R. W. Kavanagh, P. G. P. Moroni, A. Ordine, J. V. Pinto, P. Prati, V. Roca, J. P. Ribeiro, D. Rogalla, C. Rolfs, M. Romano, F. Schumann, D. Schurmann, E. Somorjai, F. Strieder, F. Terrasi, H. P. Trautvetter, and S. Zavatarelli, "Enhanced electron screening in d(d, p)t for deuterated Ta", European Physical Journal A, vol. 13, issue 3, pp. 377-382, 2002. AbstractWebsite
n/a
Casella, C., H. Costantini, A. Lemut, B. Limata, R. Bonetti, C. Broggini, L. Campajola, P. Corvisiero, J. Cruz, A. D'Onofrio, A. Formicola, Z. Fulop, G. Gervino, L. Gialanella, A. Guglielmetti, C. Gustavino, G. Gyurky, G. Imbriani, A. P. Jesus, M. Junker, A. Ordine, J. V. Pinto, P. Prati, J. P. Ribeiro, V. Roca, D. Rogalla, C. Rolfs, M. Romano, C. Rossi-Alvarez, F. Scheumann, E. Somorjai, O. Straniero, F. Strieder, F. Terrasi, H. P. Tratuvetter, S. Zavatarelli, and L. Collaboration, "First measurement of the d(p, gamma)He-3 cross section down to the solar Gamow peak", Nuclear Physics A, vol. 706, issue 1-2, pp. 203-216, 2002. AbstractWebsite
n/a
Casella, C., H. Costantini, A. Lemut, B. Limata, D. Bemmerer, R. Bonetti, C. Broggini, L. Campajola, P. Cocconi, P. Corvisiero, J. Cruz, A. D'Onofrio, A. Formicola, Z. Fulop, G. Gervino, L. Gialanella, A. Guglielmetti, C. Gustavino, G. Gyurky, A. Loiano, G. Imbriani, A. P. Jesus, M. Junker, P. Musico, A. Ordine, F. Parodi, M. Parolin, J. V. Pinto, P. Prati, J. P. Ribeiro, V. Roca, D. Rogalla, C. Rolfs, M. Romano, C. Rossi-Alvarez, A. Rottura, F. Schuemann, E. Somorjai, F. Strieder, F. Terrasi, H. P. Trautvetter, A. Vomiero, and S. Zavatarelli, "A new setup for the underground study of capture reactions", Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, vol. 489, issue 1-3, pp. 160-169, 2002. AbstractWebsite
n/a
Casella, C., H. Costantini, a. Lemut, B. Limata, D. Bemmerer, R. Bonetti, C. Broggini, L. Campajola, P. Cocconi, P. Corvisiero, J. Cruz, a. D'Onofrio, a. Formicola, Z. Fülöp, G. Gervino, L. Gialanella, a. Guglielmetti, C. Gustavino, G. Gyurky, a. Loiano, G. Imbriani, P. a. Jesus, M. Junker, P. Musico, a. Ordine, F. Parodi, M. Parolin, J. V. Pinto, P. Prati, J. P. Ribeiro, V. Roca, D. Rogalla, C. Rolfs, M. Romano, C. Rossi-Alvarez, a. Rottura, F. Schuemann, E. Somorjai, F. Strieder, F. Terrasi, H. P. Trautvetter, a. Vomiero, and S. Zavatarelli, "{A new setup for the underground study of capture reactions}", Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 489, pp. 160–169, 2002. Abstract

For the study of astrophysically relevant capture reactions in the underground laboratory LUNA a new setup of high sensitivity has been implemented. The setup includes a windowless gas target, a 4$π$ BGO summing crystal, and beam calorimeters. The setup has been recently used to measure the d(p,$\gamma$)3He cross-section for the first time within its solar Gamow peak, i.e. down to 2.5keV c.m. energy. The features of the optimized setup are described. © 2002 Elsevier Science B.V. All rights reserved.