Largest 2-generated subsemigroups of the symmetric inverse semigroup." *Proc. Edinb. Math. Soc. (2)*. 50 (2007): 551-561.Website

"Relative abelian kernels of some classes of transformation monoids." *Bull. Austral. Math. Soc.*. 73 (2006): 375-404.Website

"Congruences on monoids of order-preserving or order-reversing transformations on a finite chain." *Glasg. Math. J.*. 47 (2005): 413-424.Website

"Presentations for some monoids of partial transformations on a finite chain." *Comm. Algebra*. 33 (2005): 587-604.Website

" "

Abelian kernels of monoids of order-preserving maps and of some of its extensions." *Semigroup Forum*. 68 (2004): 335-356.Website

"Abelian kernels, solvable monoids and the abelian kernel length of a finite monoid." *Semigroups and languages*. World Sci. Publ., River Edge, NJ, 2004. 68-85.

"Presentations for some monoids of injective partial transformations on a finite chain." *Southeast Asian Bull. Math.*. 28 (2004): 903-918.

"On semigroups whose idempotent-generated subsemigroup is aperiodic." *Internat. J. Algebra Comput.*. 14 (2004): 655-665.Website

"Presentations for some monoids of partial transformations on a finite chain: a survey." *Semigroups, algorithms, automata and languages (Coimbra, 2001)*. World Sci. Publ., River Edge, NJ, 2002. 363-378.

"A new class of divisors of semigroups of isotone mappings of finite chains." *Izv. Vyssh. Uchebn. Zaved. Mat.* (2002): 51-59.

"A division theorem for the pseudovariety generated by semigroups of orientation preserving transformations on a finite chain." *Comm. Algebra*. 29 (2001): 451-456.Website

"The monoid of all injective order preserving partial transformations on a finite chain." *Semigroup Forum*. 62 (2001): 178-204.

"On generators and relations for unions of semigroups." *Semigroup Forum*. 63 (2001): 49-62.

"Abelian kernels of some monoids of injective partial transformations and an application." *Semigroup Forum*. 61 (2000): 435-452.Website

"The monoid of all injective orientation preserving partial transformations on a finite chain." *Comm. Algebra*. 28 (2000): 3401-3426.Website

" "

Semigroups of order preserving mappings on a finite chain: a new class of divisors." *Semigroup Forum*. 54 (1997): 230-236.Website

"