Publications

Export 84 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Cameron, D. L., J. Jakus, S. R. Pauleta, G. W. Pettigrew, and A. Cooper. "Pressure Perturbation Calorimetry and the Thermodynamics of Noncovalent Interactions in Water: Comparison of Protein-Protein, Protein-Ligand, and Cyclodextrin-Adamantane Complexes." Journal of Physical Chemistry B. 114 (2010): 16228-16235. AbstractWebsite

Pressure perturbation calorimetry measurements on a range of cyclodextrin adamantane, protein ligand (lysozyme-(GlcNac)(3) and ribonuclease-2'CMP) and protein-protein (cytochrome c peroxidase-pseudoazurin) complexes in aqueous solution show consistent reductions in thermal expansibilities compared to the uncomplexed molecules. Thermodynamic data for binding, obtained by titration calorimetry, are also reported. Changes in molar expansibilities can be related to the decrease in solvation during complexation. Although reasonable estimates for numbers of displaced water molecules may be obtained in the case of rigid cyclodextrin-adamantane complexes, protein expansibility data are less easily reconciled. Comparison of data from this wide range of systems indicates that effects are not simply related to changes in solvent-accessible surface area, but may also involve changes in macromolecular dynamics and flexibility. This adds to the growing consensus that understanding thermodynamic parameters associated with noncovalent interactions requires consideration of changes in internal macromolecular fluctuations and dynamics that may not be related to surface area-related solvation effects alone.

Maiti, B. K., L. B. Maia, S. R. Pauleta, I. Moura, and J. J. Moura. "Protein-Assisted Formation of Molybdenum Heterometallic Clusters: Evidence for the Formation of S2MoS2-M-S2MoS2 Clusters with M = Fe, Co, Ni, Cu, or Cd within the Orange Protein." Inorg Chem (2017). AbstractWebsite

The Orange Protein (ORP) is a small bacterial protein, of unknown function, that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoVIS2CuIS2MoVIS2]3-, noncovalently bound. The apo-ORP is able to promote the formation and stabilization of this cluster, using CuII- and MoVIS42- salts as starting metallic reagents, to yield a Mo/Cu-ORP that is virtually identical to the native ORP. In this work, we explored the ORP capability of promoting protein-assisted synthesis to prepare novel protein derivatives harboring molybdenum heterometallic clusters containing iron, cobalt, nickel, or cadmium in place of the "central" copper (Mo/Fe-ORP, Mo/Co-ORP, Mo/Ni-ORP, or Mo/Cd-ORP). For that, the previously described protein-assisted synthesis protocol was extended to other metals and the Mo/M-ORP derivatives (M = Cu, Fe, Co, Ni, or Cd) were spectroscopically (UV-visible and electron paramagnetic resonance (EPR)) characterized. The Mo/Cu-ORP and Mo/Cd-ORP derivatives are stable under oxic conditions, while the Mo/Fe-ORP, Mo/Co-ORP, and Mo/Ni-ORP derivatives are dioxygen-sensitive and stable only under anoxic conditions. The metal and protein quantification shows the formation of 2Mo:1M:1ORP derivatives, and the visible spectra suggest that the expected {S2MoS2MS2MoS2} complexes are formed. The Mo/Cu-ORP, Mo/Co-ORP, and Mo/Cd-ORP are EPR-silent. The Mo/Fe-ORP derivative shows an EPR S = 3/2 signal (E/D approximately 0.27, g approximately 5.3, 2.5, and 1.7 for the lower M= +/-1/2 doublet, and g approximately 5.7 and 1.7 (1.3 predicted) for the upper M = +/-3/2 doublet), consistent with the presence of either one S = 5/2 FeIII antiferromagnetically coupled to two S = 1/2 MoV or one S = 3/2 FeI and two S = 0 MoVI ions, in both cases in a tetrahedral geometry. The Mo/Ni-ORP shows an EPR axial S = 1/2 signal consistent with either one S = 1/2 NiI and two S = 0 MoVI or one S = 1/2 NiIII antiferromagnetically coupled to two S = 1/2 MoV ions, in both cases in a square-planar geometry. The Mo/Cu-ORP and Mo/Cd-ORP are described as {MoVI-CuI-MoVI} and {MoVI-CdII-MoVI}, respectively, while the other derivatives are suggested to exist in at least two possible electronic structures, {MoVI-MI-MoVI} <--> {MoV-MIII-MoV}.

Carreira, Cíntia, Margarida M. C. dos Santos, Sofia R. Pauleta, and Isabel Moura. "Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus – An electrochemical study." 133 (2020): 107483. AbstractWebsite

Reduction of N2O to N2 is catalysed by nitrous oxide reductase in the last step of the denitrification pathway. This multicopper enzyme has an electron transferring centre, CuA, and a tetranuclear copper-sulfide catalytic centre, “CuZ”, which exists as CuZ*(4Cu1S) or CuZ(4Cu2S). The redox behaviour of these metal centres in Marinobacter hydrocarbonoclasticus nitrous oxide reductase was investigated by potentiometry and for the first time by direct electrochemistry. The reduction potential of CuA and CuZ(4Cu2S) was estimated by potentiometry to be +275 ± 5 mV and +65 ± 5 mV vs SHE, respectively, at pH 7.6. A proton-coupled electron transfer mechanism governs CuZ(4Cu2S) reduction potential, due to the protonation/deprotonation of Lys397 with a pKox of 6.0 ± 0.1 and a pKred of 9.2 ± 0.1. The reduction potential of CuA, in enzyme samples with CuZ*(4Cu1S), is controlled by protonation of the coordinating histidine residues in a two-proton coupled electron transfer process. In the cyclic voltammograms, two redox pairs were identified corresponding to CuA and CuZ(4Cu2S), with no additional signals being detected that could be attributed to CuZ*(4Cu1S). However, an enhanced cathodic signal for the activated enzyme was observed under turnover conditions, which is explained by the binding of nitrous oxide to CuZ0(4Cu1S), an intermediate species in the catalytic cycle.

Johnston, E. M., S. Dell'acqua, S. R. Pauleta, I. Moura, and E. I. Solomon. "Protonation state of the Cu4S2 CuZ site in nitrous oxide reductase: redox dependence and insight into reactivity." Chem Sci. 6 (2015): 5670-5679. AbstractWebsite

Spectroscopic and computational methods have been used to determine the protonation state of the edge sulfur ligand in the Cu4S2 CuZ form of the active site of nitrous oxide reductase (N2OR) in its 3CuICuII (1-hole) and 2CuI2CuII (2-hole) redox states. The EPR, absorption, and MCD spectra of 1-hole CuZ indicate that the unpaired spin in this site is evenly delocalized over CuI, CuII, and CuIV. 1-hole CuZ is shown to have a mu2-thiolate edge ligand from the observation of S-H bending modes in the resonance Raman spectrum at 450 and 492 cm-1 that have significant deuterium isotope shifts (-137 cm-1) and are not perturbed up to pH 10. 2-hole CuZ is characterized with absorption and resonance Raman spectroscopies as having two Cu-S stretching vibrations that profile differently. DFT models of the 1-hole and 2-hole CuZ sites are correlated to these spectroscopic features to determine that 2-hole CuZ has a mu2-sulfide edge ligand at neutral pH. The slow two electron (+1 proton) reduction of N2O by 1-hole CuZ is discussed and the possibility of a reaction between 2-hole CuZ and O2 is considered.

Maiti, Biplab K., Teresa Avilés, Marta S. P. Carepo, Isabel Moura, Sofia R. Pauleta, and José J. G. Moura. "Rearrangement of Mo-Cu-S Cluster Reflects the Structural ­Instability of Orange Protein Cofactor." Zeitschrift für anorganische und allgemeine Chemie. 639 (2013): 1361-1364. AbstractWebsite
n/a
Neca, A. J., R. Soares, M. S. Carepo, and S. R. Pauleta. "Resonance assignment of DVU2108 that is part of the Orange Protein complex in Desulfovibrio vulgaris Hildenborough." Biomol NMR Assign. 10 (2016): 117-20. AbstractWebsite

We report the 94 % assignment of DVU2108, a protein belonging to the Orange Protein family, that in Desulfovibrio vulgaris Hildenborough forms a protein complex named the Orange Protein complex. This complex has been shown to be implicated in the cell division of this organism. DVU2108 is a conserved protein in anaerobic microorganisms and in Desulfovibrio gigas the homologous protein was isolated with a novel Mo-Cu cluster non-covalently attached to the polypeptide chain. However, the heterologously produced DVU2108 did not contain any bound metal. These assignments provide the means to characterize the interaction of DVU2108 with the proteins that form the Orange Protein complex using NMR methods.

Almeida, R. M., S. R. Pauleta, I. Moura, and JJG Moura. "Rubredoxin as a paramagnetic relaxation-inducing probe." Journal of Inorganic Biochemistry. 103 (2009): 1245-1253. AbstractWebsite

The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with impaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c(3) was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M2(1) and M18(1). The rubredoxin binding surface in the complex with cytochrome c(3) was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c(3) are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in (1)HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes. (C) 2009 Elsevier Inc. All rights reserved.

Maiti, B. K., I. Moura, J. J. Moura, and S. R. Pauleta. "The small iron-sulfur protein from the ORP operon binds a [2Fe-2S] cluster." Biochim Biophys Acta. 1857 (2016): 1422-9. AbstractWebsite

A linear cluster formulated as [S2MoS2CuS2MoS2](3-), a unique heterometallic cluster found in biological systems, was identified in a small monomeric protein (named as Orange Protein). The gene coding for this protein is part of an operon mainly present in strict anaerobic bacteria, which is composed (in its core) by genes coding for the Orange Protein and two ATPase proposed to contain Fe-S clusters. In Desulfovibrio desulfuricans G20, there is an ORF, Dde_3197 that encodes a small protein containing several cysteine residues in its primary sequence. The heterologously produced Dde_3197 aggregates mostly in inclusion bodies and was isolated by unfolding with a chaotropic agent and refolding by dialysis. The refolded protein contained sub-stoichiometric amounts of iron atoms/protein (0.5+/-0.2), but after reconstitution with iron and sulfide, high iron load contents were detected (1.8+/-0.1 or 3.4+/-0.2) using 2- and 4-fold iron excess. The visible absorption spectral features of the iron-sulfur clusters in refolded and reconstituted Dde_3197 are similar and resemble the ones of [2Fe-2S] cluster containing proteins. The refolded and reconstituted [2Fe-2S] Dde_3197 are EPR silent, but after reduction with dithionite, a rhombic signal is observed with gmax=2.00, gmed=1.95 and gmin=1.92, consistent with a one-electron reduction of a [2Fe-2S](2+) cluster into a [2Fe-2S](1+) state, with an electron spin of S=(1/2). The data suggests that Dde_3197 can harbor one or two [2Fe-2S] clusters, one being stable and the other labile, with quite identical spectroscopic properties, but stable to oxygen.

Nobrega, C. S., I. H. Saraiva, C. Carreira, B. Devreese, M. Matzapetakis, and S. R. Pauleta. "The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae, the electron donor of cytochrome c peroxidase." Biochim Biophys Acta. 1857 (2016): 169-76. AbstractWebsite

Neisseria gonorrhoeae colonizes the genitourinary track, and in these environments, especially in the female host, the bacteria are subjected to low levels of oxygen, and reactive oxygen and nitrosyl species. Here, the biochemical characterization of N. gonorrhoeae Laz is presented, as well as, the solution structure of its soluble domain determined by NMR. N. gonorrhoeae Laz is a type 1 copper protein of the azurin-family based on its spectroscopic properties and structure, with a redox potential of 277+/-5 mV, at pH7.0, that behaves as a monomer in solution. The globular Laz soluble domain adopts the Greek-key motif, with the copper center located at one end of the beta-barrel coordinated by Gly48, His49, Cys113, His118 and Met122, in a distorted trigonal geometry. The edge of the His118 imidazole ring is water exposed, in a surface that is proposed to be involved in the interaction with its redox partners. The heterologously expressed Laz was shown to be a competent electron donor to N. gonorrhoeae cytochrome c peroxidase. This is an evidence for its involvement in the mechanism of protection against hydrogen peroxide generated by neighboring lactobacilli in the host environment.

Pauleta, S. R., M. S. P. Carepo, and I. Moura. "Source and reduction of nitrous oxide." Coordination Chemistry Reviews. 387 (2019): 436-449. AbstractWebsite
n/a
E. Johnston, C. Carreira, Dell'Acqua Dey Sofia Pauleta Moura Solomon S. S. R. I. "Spectroscopic Definition of the CuZ0 Intermediate in Turnover of Nitrous Oxide Reductase and Molecular Insight into the Catalytic Mechanism." JACS (2017).
Saponaro, A., S. R. Pauleta, F. Cantini, M. Matzapetakis, C. Hammann, C. Donadoni, L. Hu, G. Thiel, L. Banci, B. Santoro, and A. Moroni. "Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function." Proc Natl Acad Sci U S A. 111 (2014): 14577-82. AbstractWebsite

cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD.

Qiu, Y., S. R. Pauleta, Y. Lu, C. F. Goodhew, I. Moura, G. W. Pettigrew, and J. A. Shelnutt. "Structural changes associated with calcium-dependent activation of the di-heme cytochrome c peroxidase of Paracoccus pantotrophus." Journal of Inorganic Biochemistry. 86 (2001): 386. AbstractWebsite
n/a
Pauleta, S. R., Y. Lu, C. F. Goodhew, Y. Qiu, I. Moura, G. W. Pettigrew, and J. A. Shelnutt. "Structural changes in the calcium-dependent activation of the di-heme cytochrome c peroxidase of Paracoccus pantotrophus." Biophysical Journal. 82 (2002): 14A. AbstractWebsite
n/a
Pettigrew, G. W., A. Echalier, and S. R. Pauleta. "Structure and mechanism in the bacterial dihaem cytochrome c peroxidases." Journal of Inorganic Biochemistry. 100 (2006): 551-567. AbstractWebsite

The bacterial cytochroine c peroxidases contain an electron-transferring haem c (E) and a peroxidatic haem c (P). Many are isolated in an inactive oxidised state. Reduction of the E baem promotes Ca2+-dependent spin state and coordination changes at the P haem rendering it accessible to ligand. Recent crystallographic work on the oxidised and mixed valence enzymes has suggested a mechanism by which an electron entering the E haem remotely triggers this activation of the P haem. Binding of hydrogen peroxide at the activated P haem leads to an intermediate catalytic form containing two oxidising equivalents, one of which is a ferryl oxene. This form of the enzyme is then reduced by two single electron transfers to the E haem delivered by small redox proteins such as cytochromes or cupredoxins. The binding of these small redox proteins is dominated by global electrostatic forces but the interfaces of the electron transfer complexes that are formed are largely hydrophobic and relatively non-specific. These features allow very high electron transfer rates in the steady state. (c) 2006 Elsevier Inc. All rights reserved.

Almeida, R. M., P. Turano, I. Moura, J. J. Moura, and S. R. Pauleta. "Superoxide reductase: different interaction modes with its two redox partners." ChemBioChem. 14 (2013): 1858-66. AbstractWebsite

Anaerobic organisms have molecular systems to detoxify reactive oxygen species when transiently exposed to oxygen. One of these systems is superoxide reductase, which reduces O2 (.-) to H2 O2 without production of molecular oxygen. In order to complete the reduction of superoxide anion, superoxide reductase requires an electron, delivered by its redox partners, which in Desulfovibrio gigas are rubredoxin and/or desulforedoxin. In this work, we characterized the interaction of Desulfovibrio gigas superoxide reductase with both electron donors by using steady-state kinetics, 2D NMR titrations, and backbone relaxation measurements. The rubredoxin surface involved in the electron transfer complex with superoxide reductase comprises the solvent-exposed hydrophobic residues in the vicinity of its metal center (Cys9, Gly10, Cys42, Gly43, and Ala44), and a Kd of 3 muM at 59 mM ionic strength was estimated by NMR. The ionic strength dependence of superoxide-mediated rubredoxin oxidation by superoxide reductase has a maximum kapp of (37 +/- 12) min(-1) at 157 mM. Relative to the electron donor desulforedoxin, its complex with superoxide reductase was not detected by chemical shift perturbation, though this protein is able to transfer electrons to superoxide reductase with a maximum kapp of (31 +/- 7) min(-1) at an ionic strength of 57 mM. Competition experiments using steady-state kinetics and NMR spectroscopy (backbone relaxation measurements and use of a paramagnetic relaxation enhancement probe) with Fe-desulforedoxin in the presence of (15) N-Zn-rubredoxin showed that these two electron donors compete for the same site on the enzyme surface, as shown in the model structure of the complex generated by using restrained molecular docking calculations. These combined strategies indicate that the two small electron donors bind in different manners, with the desulforedoxin complex being a short lived electron transfer complex or more dynamic, with many equivalent kinetically competent orientations.

Maiti, B. K., T. Aviles, I. Moura, S. R. Pauleta, and JJG Moura. "Synthesis and characterization of [S2MoS2Cu(n-SPhF)](2-) (n = o, m, P) clusters: Potential F-19-NMR structural probes for Orange Protein." Inorg Chem Commun. 45 (2014): 97-100. AbstractWebsite

Three fluorinated Mo-Cu-thiolate isomers,[Ph4Ph[S2MoS2Cu(n-SPhF)], [n-SPhF = 2-fluorothiophenol (la)], 3-fluorothiophenol (lb), and 4-fluorothiophenol (1c)] were synthesized and spectroscopically characterized. The F-19-NMR signal of the fluorine atom in the.benzene has different chemical shift for each isomer, which is highly influenced by the local environment that can be manipulated by different solvents and solutes. The fluorine-19 chemical shift is an advantageous NMR structural probe in alternative to H-1-NMR [B.K. Maiti, T. Aviles, M. Matzapetakis, I. Moura, S.R. Pauleta, JJ.G. Moura, Eur. J. Inorg. Chem. (2012) 4159.], that can be used to provide local information on the pocket of the metal cluster in the Orange Protein (ORP). (C) 2014 Elsevier B.V. All rights reserved.

Maiti, B. K., T. Aviles, M. Matzapetakis, I. Moura, S. R. Pauleta, and JJG Moura. "Synthesis of MoS4 (2-)-M (M=Cu and Cd) Clusters: Potential NMR Spectroscopic Structural Probes for the Orange Protein." European Journal of Inorganic Chemistry (2012): 4159-4166. AbstractWebsite

Two synthetic strategies of tetrathiomolybdate-metal clusters with the potential to be used as NMR structural probes for the location of the metal cofactor in the orange protein (ORP) are described. The first strategy is based on the substitution reaction in which small organic ligands bind directly to the metal centre in a molybdenumcopper hetero-dinuclear cluster. Interaction between [PPh4]2[MoS4CuCl] and either aliphatic [beta-mercaptoethanol (b-me)] or aromatic [o-aminobenzenethiol (abt)] thiols in the presence of a strong base resulted in the formation of [Ph4P]2[S2MoS2Cu(b-me)] (1a) and [Et4N]2[S2MoS2Cu(abt)]center dot H2O center dot 0.25DMF (1b), which can be used to obtain intermolecular NOEs. The compound 1a readily hydrolyzed to [Ph4P]2[OSMoS2Cu(b-me)] (1ahydro) in contact with a protic solvent. The second strategy consisted of the incorporation of cadmium into tetrathiomolybdate ([MoS4]2), which gives rise to the trinuclear cluster compound [PPh4]2[(MoS4)2Cd] (2). All clusters were characterized spectroscopically and their structure determined by X-ray diffraction. The NMR spectroscopic data are consistent with the formation of a complex with a 1:1 ratio of {MoS4Cu} and thiol. The 113Cd NMR chemical shift of compound 2 is consistent with the cadmium having a tetrahedral geometry and coordinated by four sulfur ligands. The tetraphenylphosphonium cation in compound 1a was replaced by a tetramethylammonium countercation originating in the water-soluble compound [Me4N-1a]. Solubility in aqueous buffers is a requirement for incorporating this cluster into apo-ORP. These compounds will be used to identify the exact location of the ORP heterometallic cluster using NMR methodologies.

Dell'acqua, S., S. R. Pauleta, I. Moura, and JJG Moura. "The tetranuclear copper active site of nitrous oxide reductase: the CuZ center." Journal of Biological Inorganic Chemistry. 16 (2011): 183-194. AbstractWebsite

This review focuses on the novel CuZ center of nitrous oxide reductase, an important enzyme owing to the environmental significance of the reaction it catalyzes, reduction of nitrous oxide, and the unusual nature of its catalytic center, named CuZ. The structure of the CuZ center, the unique tetranuclear copper center found in this enzyme, opened a novel area of research in metallobiochemistry. In the last decade, there has been progress in defining the structure of the CuZ center, characterizing the mechanism of nitrous oxide reduction, and identifying intermediates of this reaction. In addition, the determination of the structure of the CuZ center allowed a structural interpretation of the spectroscopic data, which was supported by theoretical calculations. The current knowledge of the structure, function, and spectroscopic characterization of the CuZ center is described here. We would like to stress that although many questions have been answered, the CuZ center remains a scientific challenge, with many hypotheses still being formed.

Xie, X., R. G. Hadt, S. R. Pauleta, P. J. Gonzalez, S. Un, I. Moura, and E. I. Solomon. "A variable temperature spectroscopic study on Paracoccuspantotrophus pseudoazurin: protein constraints on the blue Cu site." J Inorg Biochem. 103 (2009): 1307-13. AbstractWebsite

The blue or Type 1 (T1) copper site of Paracoccuspantotrophus pseudoazurin exhibits significant absorption intensity in both the 450 and 600 nm regions. These are sigma and pi S(Cys) to Cu(2+) charge transfer (CT) transitions. The temperature dependent absorption, EPR, and resonance Raman (rR) vibrations enhanced by these bands indicate that a single species is present at all temperatures. This contrasts the temperature dependent behavior of the T1 center in nitrite reductase [S. Ghosh, X. Xie, A. Dey, Y. Sun, C. Scholes, E. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 4969-4974] which has a thioether ligand that is unconstrained by the protein. The lack of temperature dependence in the T1 site in pseudoazurin indicates the presence of a protein constraint similar to the blue Cu site in plastocyanin where the thioether ligand is constrained at 2.8 A. However, plastocyanin exhibits only pi CT. This spectral difference between pseudoazurin and plastocyanin reflects a coupled distortion of the site where the axial thioether in pseudoazurin is also constrained, but at a shorter Cu-S(Met) bond length. This leads to an increase in the Cu(2+)-S(Cys) bond length, and the site undergoes a partial tetragonal distortion in pseudoazurin. Thus, its ground state wavefunction has both sigma and pi character in the Cu(2+)-S(Cys) bond.

Nóbrega, C. S., B. Devreese, and S. R. Pauleta. "YhjA - An Escherichia coli trihemic enzyme with quinol peroxidase activity." Biochimica et Biophysica Acta - Bioenergetics. 1859.6 (2018): 411-422. AbstractWebsite
n/a
Conference Paper
Saponaro, A. C., M. Matzapetakis, B. Santoro, S. R. Pauleta, and A. Moroni. "The Auxiliary Subunit TRIP8B Inhibits the Binding of CAMP to HCN2 Channels Through an Allosteric Mechanism." Biophysical Journal. Vol. 106. Biophys J, 106. 2014. 758a. Abstract
n/a
Johnston, E. M., S. Dell'acqua, S. Gorelsky, S. R. Pauleta, I. Moura, and E. I. Solomon. "Electronic structure and reactivities of resting and intermediate forms of the tetranuclear copper cluster in nitrous oxide reductase." Abstracts of Papers of the American Chemical Society. Vol. 248. Abstr Pap Am Chem S, 248. 2014. Abstract
n/a
Saponaro, A., C. Donadoni, S. R. Pauleta, F. Cantini, M. Matzapetakis, G. Thiel, L. Banci, B. Santoro, and A. Moroni. "HCN Channels: The Molecular Basis for their cAMP-TRIP8b Regulation." Biophysical Journal. Vol. 108. Biophys J, 108. 2015. 366a. Abstract
n/a
Moura, I., C. Carreira, S. Pauleta, R. F. Nunes, J. J. Moura, S. Ramos, S. Dell'acqua, and O. Einsle. "INSIGHTS INTO THE CATALYTICCYCLE OF Pseudomonas nautica NITROUS OXIDE REDUCTASE." Journal of Biological Inorganic Chemistry. Vol. 19. J Biol Inorg Chem, 19. 2014. S104. Abstract
n/a