Publications

Export 23 results:
Sort by: Author Title [ Type  (Asc)] Year
Book Chapter
Pauleta, Sofia R., Marta S. P. Carepo, and Isabel Moura. "Transition Metals and Sulfur – A Strong Relationship for Life5. The Tetranuclear Copper-Sulfide Center of Nitrous Oxide Reductase." Eds. Martha Sosa Torres, and Peter Kroneck. De Gruyter, 2020. 139-164. Abstract
n/a
Conference Paper
Saponaro, A. C., M. Matzapetakis, B. Santoro, S. R. Pauleta, and A. Moroni. "The Auxiliary Subunit TRIP8B Inhibits the Binding of CAMP to HCN2 Channels Through an Allosteric Mechanism." Biophysical Journal. Vol. 106. Biophys J, 106. 2014. 758a. Abstract
n/a
Johnston, E. M., S. Dell'acqua, S. Gorelsky, S. R. Pauleta, I. Moura, and E. I. Solomon. "Electronic structure and reactivities of resting and intermediate forms of the tetranuclear copper cluster in nitrous oxide reductase." Abstracts of Papers of the American Chemical Society. Vol. 248. Abstr Pap Am Chem S, 248. 2014. Abstract
n/a
Saponaro, A., C. Donadoni, S. R. Pauleta, F. Cantini, M. Matzapetakis, G. Thiel, L. Banci, B. Santoro, and A. Moroni. "HCN Channels: The Molecular Basis for their cAMP-TRIP8b Regulation." Biophysical Journal. Vol. 108. Biophys J, 108. 2015. 366a. Abstract
n/a
Saponaro, A., M. Matzapetakis, A. Moroni, and S. Pauleta. "Structural rearrangements occurring on HCN2 CNBD domain upon cAMP binding." European Biophysics Journal with Biophysics Letters. Vol. 42. Eur Biophys J Biophy, 42. 2013. S181. Abstract
n/a
Journal Article
Hadt, R. G., X. J. Xie, S. R. Pauleta, I. Moura, and E. I. Solomon. "Analysis of resonance Raman data on the blue copper site in pseudoazurin: Excited state pi and sigma charge transfer distortions and their relation to ground state reorganization energy." Journal of Inorganic Biochemistry. 115 (2012): 155-162. AbstractWebsite

The short Cu2+-S(Met) bond in pseudoazurin (PAz) results in the presence of two relatively intense S-p(pi) and S-p(sigma) charge transfer (CT) transitions. This has enabled resonance Raman (rR) data to be obtained for each excited state. The rR data show very different intensity distribution patterns for the vibrations in the 300-500 cm(-1) region. Time-dependent density functional theory (TDDFT) calculations have been used to determine that the change in intensity distribution between the S-p(pi) and S-p(sigma) excited states reflects the differential enhancement of S(Cys) backbone modes with Cu-S(Cys)-C-beta out-of-plane (oop) and in-plane (ip) bend character in their respective potential energy distributions (PEDs). The rR excited state distortions have been related to ground state reorganization energies (lambda s) and predict that, in addition to M-L stretches, the Cu-S(Cys)-C-beta oop bend needs to be considered. DFT calculations predict a large distortion in the Cu-S(Cys)-C-beta oop bending coordinate upon reduction of a blue copper (BC) site; however, this distortion is not present in the X-ray crystal structures of reduced BC sites. The lack of Cu-S(Cys)-C-beta oop distortion upon reduction corresponds to a previously unconsidered constraint on the thiolate ligand orientation in the reduced state of BC proteins and can be considered as a contribution to the entatic/rack nature of BC sites. (C) 2012 Elsevier Inc. All rights reserved.

Paes de Sousa, P. M., S. R. Pauleta, M. L. Simoes Goncalves, G. W. Pettigrew, I. Moura, J. J. Moura, and M. M. Correia Dos Santos. "Artefacts induced on c-type haem proteins by electrode surfaces." J Biol Inorg Chem. 16 (2011): 209-15. AbstractWebsite

In this work it is demonstrated that the characterization of c-type haem containing proteins by electrochemical techniques needs to be cautiously performed when using pyrolytic graphite electrodes. An altered form of the cytochromes, which has a redox potential 300 mV lower than that of the native state and displays peroxidatic activity, can be induced by interaction with the pyrolytic graphite electrode. Proper control experiments need to be performed, as altered conformations of the enzymes containing c-type haems can show activity towards the enzyme substrate. The work was focused on the study of the activation mechanism and catalytic activity of cytochrome c peroxidase from Paracoccus pantotrophus. The results could only be interpreted with the assignment of the observed non-turnover and catalytic signals to a non-native conformation state of the electron-transferring haem. The same phenomenon was detected for Met-His monohaem cytochromes (mitochondrial cytochrome c and Desulfovibrio vulgaris cytochrome c-553), as well as for the bis-His multihaem cytochrome c(3) from Desulfovibrio gigas, showing that this effect is independent of the axial coordination of the c-type haem protein. Thus, the interpretation of electrochemical signals of c-type (multi)haem proteins at pyrolytic graphite electrodes must be carefully performed, to avoid misassignment of the signals and incorrect interpretation of catalytic intermediates.

de Sousa, P. M. P., S. R. Pauleta, D. Rodrigues, M. L. S. Goncalves, G. W. Pettigrew, I. Moura, JJG Moura, and M. M. C. dos Santos. "Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study." Journal of Biological Inorganic Chemistry. 13 (2008): 779-787. AbstractWebsite

A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 mu M was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.

Pauleta, S. R., Y. Lu, C. F. Goodhew, I. Moura, G. W. Pettigrew, and J. A. Shelnutt. "Calcium-dependent conformation of a heme and fingerprint peptide of the diheme cytochrome c peroxidase from Paracoccus pantotrophus." Biochemistry. 40 (2001): 6570-6579. AbstractWebsite

The structural changes in the heme macrocycle and substituents caused by binding of Ca2+ to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca2+-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca2+ or Mg2+. This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca2+ binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca2+ binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation.

Pauleta, S. R., Y. Lu, C. F. Goodhew, I. Moura, G. W. Pettigrew, and J. A. Shelnutt. "Calcium-dependent heme structure in the reduced forms of the bacterial cytochrome c peroxidase from Paracoccus pantotrophus." Biochemistry. 47 (2008): 5841-5850. AbstractWebsite

This work reports for the first time a resonance Raman study of the mixed-valence and fully reduced forms of Paracoccus pantotrophus bacterial cytochrome c peroxidase. The spectra of the active mixed-valence enzyme show changes in the structure of the ferric peroxidatic heme compared to the fully oxidized enzyme; these differences are observed upon reduction of the electron-transferring heme and upon full occupancy of the calcium site. For the mixed-valence form in the absence of Ca2+, the peroxidatic heme is six-coordinate and low-spin on the basis of the frequencies of the structure-sensitive Raman lines: the enzyme is inactive. With added Ca2+, the peroxidatic heme is five-coordinate high-spin and active. The calcium-dependent spectral differences indicate little change in the conformation of the ferrous electron-transferring heme, but substantial changes in the conformation of the ferric peroxidatic heme. Structural changes associated with Ca2+ binding are indicated by spectral differences in the structure-sensitive marker lines, the out-of-plane low-frequency macrocyclic modes, and the vibrations associated with the heme substituents of that heme. The Ca2+-dependent appearance of a strong gamma(15) saddling-symmetry mode for the mixed-valence form is consistent with a strong saddling deformation in the active peroxidatic heme, a feature seen in the Raman spectra of other peroxidases. For the fully reduced form in the presence of Ca2+, the resonance Raman spectra show that the peroxidatic heme remains high-spin.

Johnston, E. M., S. Dell'acqua, S. Ramos, S. R. Pauleta, I. Moura, and E. I. Solomon. "Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase." J Am Chem Soc. 136 (2014): 614-7. AbstractWebsite

N2OR has been found to have two structural forms of its tetranuclear copper active site, the 4CuS Cu(Z)* form and the 4Cu2S Cu(Z) form. EPR, resonance Raman, and MCD spectroscopies have been used to determine the redox states of these sites under different reductant conditions, showing that the Cu(Z)* site accesses the 1-hole and fully reduced redox states, while the Cu(Z) site accesses the 2-hole and 1-hole redox states. Single-turnover reactions of N2OR for Cu(Z) and Cu(Z)* poised in these redox states and steady-state turnover assays with different proportions of Cu(Z) and Cu(Z)* show that only fully reduced Cu(Z)* is catalytically competent in rapid turnover with N2O.

Maiti, B. K., L. B. Maia, C. M. Silveira, S. Todorovic, C. Carreira, M. S. Carepo, R. Grazina, I. Moura, S. R. Pauleta, and J. J. Moura. "Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes." J Biol Inorg Chem. 20 (2015): 821-9. AbstractWebsite

Molybdenum is found in the active site of enzymes usually coordinated by one or two pyranopterin molecules. Here, we mimic an enzyme with a mononuclear molybdenum-bis pyranopterin center by incorporating molybdenum in rubredoxin. In the molybdenum-substituted rubredoxin, the metal ion is coordinated by four sulfurs from conserved cysteine residues of the apo-rubredoxin and two other exogenous ligands, oxygen and thiol, forming a Mo((VI))-(S-Cys)4(O)(X) complex, where X represents -OH or -SR. The rubredoxin molybdenum center is stabilized in a Mo(VI) oxidation state, but can be reduced to Mo(IV) via Mo(V) by dithionite, being a suitable model for the spectroscopic properties of resting and reduced forms of molybdenum-bis pyranopterin-containing enzymes. Preliminary experiments indicate that the molybdenum site built in rubredoxin can promote oxo transfer reactions, as exemplified with the oxidation of arsenite to arsenate.

de Sousa, P. M. P., S. R. Pauleta, M. L. S. Goncalves, G. W. Pettigrew, I. Moura, M. M. C. dos Santos, and JJG Moura. "Mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by P-pantotrophus pseudoazurin: kinetics of intermolecular electron transfer." Journal of Biological Inorganic Chemistry. 12 (2007): 691-698. AbstractWebsite

This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E (0)', of 230 +/- 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 +/- 0.2 x 10(5) M(-1) s(-1) was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.

Dell'acqua, S., S. R. Pauleta, P. M. P. de Sousa, E. Monzani, L. Casella, JJG Moura, and I. Moura. "A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica." Journal of Biological Inorganic Chemistry. 15 (2010): 967-976. AbstractWebsite

The final step of bacterial denitrification, the two-electron reduction of N2O to N-2, is catalyzed by a multi-copper enzyme named nitrous oxide reductase. The catalytic centre of this enzyme is a tetranuclear copper site called CuZ, unique in biological systems. The in vitro reconstruction of the activity requires a slow activation in the presence of the artificial electron donor, reduced methyl viologen, necessary to reduce CuZ from the resting non-active state (1Cu(II)/3Cu(I)) to the fully reduced state (4Cu(I)), in contrast to the turnover cycle, which is very fast. In the present work, the direct reaction of the activated form of Pseudomonas nautica nitrous oxide reductase with stoichiometric amounts of N2O allowed the identification of a new reactive intermediate of the catalytic centre, CuZA degrees, in the turnover cycle, characterized by an intense absorption band at 680 nm. Moreover, the first mediated electrochemical study of Ps. nautica nitrous oxide reductase with its physiological electron donor, cytochrome c-552, was performed. The intermolecular electron transfer was analysed by cyclic voltammetry, under catalytic conditions, and a second-order rate constant of (5.5 +/- A 0.9) x 10(5) M-1 s(-1) was determined. Both the reaction of stoichiometric amounts of substrate and the electrochemical studies show that the active CuZA degrees species, generated in the absence of reductants, can rearrange to the resting non-active CuZ state. In this light, new aspects of the catalytic and activation/inactivation mechanism of the enzyme are discussed.

Maiti, B. K., L. B. Maia, K. Pal, B. Pakhira, T. Aviles, I. Moura, S. R. Pauleta, J. L. Nunez, A. C. Rizzi, CD Brondino, S. Sarkar, and J. J. Moura. "One electron reduced square planar bis(benzene-1,2-dithiolato) copper dianionic complex and redox switch by O2/HO(-)." Inorg Chem. 53 (2014): 12799-808. AbstractWebsite

The complex [Ph4P]2[Cu(bdt)2] (1(red)) was synthesized by the reaction of [Ph4P]2[S2MoS2CuCl] with H2bdt (bdt = benzene-1,2-dithiolate) in basic medium. 1(red) is highly susceptible toward dioxygen, affording the one electron oxidized diamagnetic compound [Ph4P][Cu(bdt)2] (1(ox)). The interconversion between these two oxidation states can be switched by addition of O2 or base (Et4NOH = tetraethylammonium hydroxide), as demonstrated by cyclic voltammetry and UV-visible and EPR spectroscopies. Thiomolybdates, in free or complex forms with copper ions, play an important role in the stability of 1(red) during its synthesis, since in its absence, 1(ox) is isolated. Both 1(red) and 1(ox) were structurally characterized by X-ray crystallography. EPR experiments showed that 1(red) is a Cu(II)-sulfur complex and revealed strong covalency on the copper-sulfur bonds. DFT calculations confirmed the spin density delocalization over the four sulfur atoms (76%) and copper (24%) atom, suggesting that 1(red) has a "thiyl radical character". Time dependent DFT calculations identified such ligand to ligand charge transfer transitions. Accordingly, 1(red) is better described by the two isoelectronic structures [Cu(I)(bdt2, 4S(3-,)*)](2-) <--> [Cu(II)(bdt2, 4S(4-))](2-). On thermodynamic grounds, oxidation of 1(red) (doublet state) leads to 1(ox) singlet state, [Cu(III)(bdt2, 4S(4-))](1-).

Carreira, Cíntia, Margarida M. C. dos Santos, Sofia R. Pauleta, and Isabel Moura. "Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus – An electrochemical study." 133 (2020): 107483. AbstractWebsite

Reduction of N2O to N2 is catalysed by nitrous oxide reductase in the last step of the denitrification pathway. This multicopper enzyme has an electron transferring centre, CuA, and a tetranuclear copper-sulfide catalytic centre, “CuZ”, which exists as CuZ*(4Cu1S) or CuZ(4Cu2S). The redox behaviour of these metal centres in Marinobacter hydrocarbonoclasticus nitrous oxide reductase was investigated by potentiometry and for the first time by direct electrochemistry. The reduction potential of CuA and CuZ(4Cu2S) was estimated by potentiometry to be +275 ± 5 mV and +65 ± 5 mV vs SHE, respectively, at pH 7.6. A proton-coupled electron transfer mechanism governs CuZ(4Cu2S) reduction potential, due to the protonation/deprotonation of Lys397 with a pKox of 6.0 ± 0.1 and a pKred of 9.2 ± 0.1. The reduction potential of CuA, in enzyme samples with CuZ*(4Cu1S), is controlled by protonation of the coordinating histidine residues in a two-proton coupled electron transfer process. In the cyclic voltammograms, two redox pairs were identified corresponding to CuA and CuZ(4Cu2S), with no additional signals being detected that could be attributed to CuZ*(4Cu1S). However, an enhanced cathodic signal for the activated enzyme was observed under turnover conditions, which is explained by the binding of nitrous oxide to CuZ0(4Cu1S), an intermediate species in the catalytic cycle.

Johnston, E. M., S. Dell'acqua, S. R. Pauleta, I. Moura, and E. I. Solomon. "Protonation state of the Cu4S2 CuZ site in nitrous oxide reductase: redox dependence and insight into reactivity." Chem Sci. 6 (2015): 5670-5679. AbstractWebsite

Spectroscopic and computational methods have been used to determine the protonation state of the edge sulfur ligand in the Cu4S2 CuZ form of the active site of nitrous oxide reductase (N2OR) in its 3CuICuII (1-hole) and 2CuI2CuII (2-hole) redox states. The EPR, absorption, and MCD spectra of 1-hole CuZ indicate that the unpaired spin in this site is evenly delocalized over CuI, CuII, and CuIV. 1-hole CuZ is shown to have a mu2-thiolate edge ligand from the observation of S-H bending modes in the resonance Raman spectrum at 450 and 492 cm-1 that have significant deuterium isotope shifts (-137 cm-1) and are not perturbed up to pH 10. 2-hole CuZ is characterized with absorption and resonance Raman spectroscopies as having two Cu-S stretching vibrations that profile differently. DFT models of the 1-hole and 2-hole CuZ sites are correlated to these spectroscopic features to determine that 2-hole CuZ has a mu2-sulfide edge ligand at neutral pH. The slow two electron (+1 proton) reduction of N2O by 1-hole CuZ is discussed and the possibility of a reaction between 2-hole CuZ and O2 is considered.

Neca, A. J., R. Soares, M. S. Carepo, and S. R. Pauleta. "Resonance assignment of DVU2108 that is part of the Orange Protein complex in Desulfovibrio vulgaris Hildenborough." Biomol NMR Assign. 10 (2016): 117-20. AbstractWebsite

We report the 94 % assignment of DVU2108, a protein belonging to the Orange Protein family, that in Desulfovibrio vulgaris Hildenborough forms a protein complex named the Orange Protein complex. This complex has been shown to be implicated in the cell division of this organism. DVU2108 is a conserved protein in anaerobic microorganisms and in Desulfovibrio gigas the homologous protein was isolated with a novel Mo-Cu cluster non-covalently attached to the polypeptide chain. However, the heterologously produced DVU2108 did not contain any bound metal. These assignments provide the means to characterize the interaction of DVU2108 with the proteins that form the Orange Protein complex using NMR methods.

Nobrega, C. S., I. H. Saraiva, C. Carreira, B. Devreese, M. Matzapetakis, and S. R. Pauleta. "The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae, the electron donor of cytochrome c peroxidase." Biochim Biophys Acta. 1857 (2016): 169-76. AbstractWebsite

Neisseria gonorrhoeae colonizes the genitourinary track, and in these environments, especially in the female host, the bacteria are subjected to low levels of oxygen, and reactive oxygen and nitrosyl species. Here, the biochemical characterization of N. gonorrhoeae Laz is presented, as well as, the solution structure of its soluble domain determined by NMR. N. gonorrhoeae Laz is a type 1 copper protein of the azurin-family based on its spectroscopic properties and structure, with a redox potential of 277+/-5 mV, at pH7.0, that behaves as a monomer in solution. The globular Laz soluble domain adopts the Greek-key motif, with the copper center located at one end of the beta-barrel coordinated by Gly48, His49, Cys113, His118 and Met122, in a distorted trigonal geometry. The edge of the His118 imidazole ring is water exposed, in a surface that is proposed to be involved in the interaction with its redox partners. The heterologously expressed Laz was shown to be a competent electron donor to N. gonorrhoeae cytochrome c peroxidase. This is an evidence for its involvement in the mechanism of protection against hydrogen peroxide generated by neighboring lactobacilli in the host environment.

Saponaro, A., S. R. Pauleta, F. Cantini, M. Matzapetakis, C. Hammann, C. Donadoni, L. Hu, G. Thiel, L. Banci, B. Santoro, and A. Moroni. "Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function." Proc Natl Acad Sci U S A. 111 (2014): 14577-82. AbstractWebsite

cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD.

Qiu, Y., S. R. Pauleta, Y. Lu, C. F. Goodhew, I. Moura, G. W. Pettigrew, and J. A. Shelnutt. "Structural changes associated with calcium-dependent activation of the di-heme cytochrome c peroxidase of Paracoccus pantotrophus." Journal of Inorganic Biochemistry. 86 (2001): 386. AbstractWebsite
n/a
Pauleta, S. R., Y. Lu, C. F. Goodhew, Y. Qiu, I. Moura, G. W. Pettigrew, and J. A. Shelnutt. "Structural changes in the calcium-dependent activation of the di-heme cytochrome c peroxidase of Paracoccus pantotrophus." Biophysical Journal. 82 (2002): 14A. AbstractWebsite
n/a
Xie, X., R. G. Hadt, S. R. Pauleta, P. J. Gonzalez, S. Un, I. Moura, and E. I. Solomon. "A variable temperature spectroscopic study on Paracoccuspantotrophus pseudoazurin: protein constraints on the blue Cu site." J Inorg Biochem. 103 (2009): 1307-13. AbstractWebsite

The blue or Type 1 (T1) copper site of Paracoccuspantotrophus pseudoazurin exhibits significant absorption intensity in both the 450 and 600 nm regions. These are sigma and pi S(Cys) to Cu(2+) charge transfer (CT) transitions. The temperature dependent absorption, EPR, and resonance Raman (rR) vibrations enhanced by these bands indicate that a single species is present at all temperatures. This contrasts the temperature dependent behavior of the T1 center in nitrite reductase [S. Ghosh, X. Xie, A. Dey, Y. Sun, C. Scholes, E. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 4969-4974] which has a thioether ligand that is unconstrained by the protein. The lack of temperature dependence in the T1 site in pseudoazurin indicates the presence of a protein constraint similar to the blue Cu site in plastocyanin where the thioether ligand is constrained at 2.8 A. However, plastocyanin exhibits only pi CT. This spectral difference between pseudoazurin and plastocyanin reflects a coupled distortion of the site where the axial thioether in pseudoazurin is also constrained, but at a shorter Cu-S(Met) bond length. This leads to an increase in the Cu(2+)-S(Cys) bond length, and the site undergoes a partial tetragonal distortion in pseudoazurin. Thus, its ground state wavefunction has both sigma and pi character in the Cu(2+)-S(Cys) bond.