The present work proposes the development of a bio-battery composed by an ultrathin monolithic structure of an electrospun cellulose acetate membrane, over which was deposited metallic thin film electrodes by thermal evaporation on both surfaces. The electrochemical characterization of the bio-batteries was performed under simulated body fluids like sweat and blood plasma [salt solution - 0.9% (w/w) NaCl]. Reversible electrochemical reactions were detected through the cellulose acetate structure. Thus, a stable electrochemical behavior was achieved for a bio-battery with silver and aluminum thin films as electrodes. This device exhibits the ability to supply a power density higher than 3μWcm-2.Finally, a bio-battery prototype was tested on a sweated skin, demonstrating the potential of applicability of this bio-device as a micropower source. © 2010 Elsevier B.V.
cited By 13