Publications

Export 67 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Raniero, L., Ferreira Águas Zhang Fortunato Martins I. H. S. "Study of a-SiC:H buffer layer on nc-Si/a-Si:H solar cells deposited by PECVD technique." Conference Record of the IEEE Photovoltaic Specialists Conference. 2005. 1548-1551. Abstract

This work deals with the study of the role of the buffer layers thickness on the TCO/p-a-SiC:H/buffer1/buffer2/i(nc-Si/a-Si:H)/n-a- Si:H/Al solar cell I-V and impedance performances. The aim was to improve the p/i interface region, which has a large influence on the solar cell characteristics and stability. In order to match the difference between the p and i layers optical gaps, the buffer layers were deposited using, for each layer, different methane to silane mixtures, aiming to obtain a gradual match of the corresponding optical gaps. The intrinsic layer was deposited at high hydrogen dilution rates at 27.12 MHz in conditions that allowed the incorporation of nanoparticles/nanoclusters. Solar cells with fill factor of 0.63; open circuit voltage of 0.93 Volts; short circuit current density of 16.13 mA/cm2 and an efficiency of 9.4% were produced with buffer layers around 1.3 nm thick. When comparing these solar cells with conventional amorphous silicon solar cells we notice that the quantum efficiency from ultraviolet to green regions is improved up to 13%, in average. Concerning solar cell capacitance, the data show that the best solar cells exhibit the highest capacitance, meaning that the films are compact and dense, in-line with the other electrical characteristics obtained. ©2005 IEEE.

Meng, L., Macarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Materials Research Society Symposium - Proceedings. Vol. 388. 1995. 379-384. Abstract

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as-deposited film is about 1.3×10-1 Ω* cm and decreases down to 6.9×10-3 Ω* cm as the annealing temperature is increased up to 500°C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping.

Meng, L.-j., Maçarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Vacuum. 46 (1995): 673-680. AbstractWebsite

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as deposited film is about 1.3 × 10-1 gW*cm and decreases down to 6.9 × 10-3 Ω*cm as the annealing temperature is increased up to 500 °C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping. © 1995.

c Gonçalves, A.a c, Gonçalves Fortunato Marques Pimentel Martins Silva Smith Bela Borges G. a E. a. "Study of electrochromic devices incorporating a polymer gel electrolyte component." Materials Science Forum. 514-516 (2006): 83-87. AbstractWebsite

Electrochromic materials have attracted considerable attention during the last two decades as a consequence of their potential application in several different types of optical devices. Examples of these devices include intelligent windows and time labels. In this paper the authors describe results obtained with thin tungsten oxide films produced at room temperature by rf magnetron sputtering under an argon and oxygen atmosphere on transparent conductive oxide coated glass substrates. To protect the surface of the electrochromic film, prevent water absorption and obtain a good memory effect under open circuit voltages, a layer of Ta2O5 was deposited over the WO3 films. In this study, the effect of different electrolyte compositions on the open circuit memory of optical devices has been characterized. The best results were obtained for electrochromic devices with polymer gel p(TMC)3LiC1O4 and p(TMC)8LiClO 4 electrolytes. These prototype devices present an overall transmittance of ∼75% in their bleached state and after coloration 40.5 and 52.5% respectively. These devices also show memory effect and an optical density considered satisfactory for some electrochromic applications.

c Gonçalves, A.a, Costa Pereira Correia Silva Barbosa Rodrigues Henriques Martins Fortunato C. a S. a. "Study of electrochromic devices with nanocomposites polymethacrylate hydroxyethylene resin based electrolyte." Polymers for Advanced Technologies. 23 (2012): 791-795. AbstractWebsite

This paper reports the application of a polymethacrylate hydroxyethylene resin based electrolyte in electrochromic (EC) devices. The electrolyte is characterized by electrochemical impedance spectroscopy, visible spectroscopy, TGA, DSC, and DRX and tested as an ionic conductor in an EC device with the following configuration: Substrate/IZO/WO 3/Polymer Electrolyte/(CeO 2)TiO 2/IZO/Substrate. The electrolyte presents an ionic conductivity of 10 -7S/cm at room temperature and TGA analysis show that electrolyte is thermally degraded at 200°C. The EC device based on this polymethacrylate hydroxyethylene resin electrolyte system shows memory effect and exhibits an excellent optical density. © 2011 John Wiley & Sons, Ltd.

Águas, H., Silva Viegas Pereira Fortunato Martins R. J. C. M. "Study of environmental degradation of silver surface." Physica Status Solidi (C) Current Topics in Solid State Physics. 5 (2008): 1215-1218. AbstractWebsite

To evaluate the evolution of a dark film formation on silver surface objects, several coupons were catalogued and place inside a museum, located in an urban area. The changes on these samples were measured by spectroscopic ellipsometry, in periods of months. This technique allows the reduction of the coupons exposure time, in several months, due to its high sensitivity to surface modifications, with acceptable results for the evaluation of its degradation. The thicknesses of the degradation layers and the optical properties of silver oxide, chloride and sulphide reference samples were determined using a mixture of Tauc-Lorentz and Drude models. The composition of the silver corrosion layer was determined by fitting the layer using a Bruggeman Effective Medium Approximation (BEMA) of the three products plus voids. It was found that the thickness of the layer depends in the placement of the coupons, namely, inside or outside displayers. The average film thickness after 6 months was of 180 Å and 280 Å, inside and outside the displayers, respectively. The main compounds found in the layers were the silver chlorides and sulphides, which composition changed with the thickness of the layer, and the exposition time. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.

Zhang, S.a, Hu Raniero Liao Ferreira Fortunato Vilarinho Perreira Martins Z. a L. a. "The study of high temperature annealing of a-SiC:H films." Materials Science Forum. 514-516 (2006): 18-22. AbstractWebsite

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 Å) gold film was evaporated on the half area of the a-SiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100°C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.

Raniero, L., Ferreira Pereira Águas Fortunato Martins I. L. H. "Study of nanostructured silicon by hydrogen evolution and its application in p-i-n solar cells." Journal of Non-Crystalline Solids. 352 (2006): 1945-1948. AbstractWebsite

Nanostructured silicon films were deposited on the amorphous to microcrystalline transition region by plasma enhanced chemical vapor deposition, using an rf frequency of 27.12 MHz. Micro-Raman spectroscopy data show that in the transition region the peaks typically associated with amorphous silicon are slightly shifted towards higher wavenumber and become narrow, which could be explained by the short range order improvement or by the incorporation of very small Si nanocrystallites. The hydrogen evolution spectra from samples deposited in this region show two peaks, one at low temperature (LT) and the other at high temperature (HT), around 698 K and 840 K, respectively. These peaks represent activation energies of 87 (LT) and 135 (HT) kJ/mol, respectively, as deduced from the so-called Kissinger's method. The solar cells fabricated using i-layers produced in this transition region show good performances, with current density = 14.96 mA/cm2, short circuit voltage = 0.95 V, and fill factor = 0.67, which leads to efficiencies of 9.52%. © 2006 Elsevier B.V. All rights reserved.

Raniero, L., Fortunato Ferreira Martins E. I. R. "Study of nanostructured/amorphous silicon solar cell by impedance spectroscopy technique." Journal of Non-Crystalline Solids. 352 (2006): 1880-1883. AbstractWebsite

This work deals with the study of nanostructured/amorphous silicon solar cell deposited by plasma enhanced chemical vapor deposition at 27.12 MHz by impedance spectroscopy. The solar cell studied present fill factor of 0.67, open circuit voltage of 0.94 V and short-circuit current density of 14.48 mA/cm2, which leads to the efficiency of 9.12%. The impedance spectroscopy analysis was performed under dark and illumination conditions. The data obtained were used to define an electrical equivalent circuit model able to explain the role of the different solar cell components, including the interfaces, on the solar cell performance. © 2006 Elsevier B.V. All rights reserved.

Águas, H., Silva Ferreira Fortunato Martins V. I. E. "Study of the effect of different plasma-enhanced chemical vapour deposition reactor configurations on the properties of hydrogenated amorphous silicon thin films." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 80 (2000): 475-486. AbstractWebsite

In this work we present a study performed in a plasma-enhanced chemical vapour deposition reactor, where different rf electrode configurations were used with the aim of achieving conditions that lead to growth of highly uniform amorphous silicon films, with the required electronic quality, at high growth rates. This study consists in determining the plasma characteristics under different electrode configurations, in an argon plasma, using as diagnostic tools a Langmuir probe and impedance probe. These results were correlated with the hydrogenated amorphous silicon films produced, thereby allowing us to establish the best electrode configuration to grow electronic-grade-quality amorphous silicon films.

Lopes, A., Nunes Vilarinho Monteiro Fortunato Martins P. P. R. "Study of the sensing mechanism of SnO2 thin-film gas sensors using hall effect measurements." Key Engineering Materials. 230-232 (2002): 357-360. AbstractWebsite

Hall effect measurements are one of the most powerful techniques for obtaining information about the conduction mechanism in polycrystalline semiconductor materials, which is the basis for understanding semiconductor gas sensors. In order to investigate the correlation between the microscopic characteristics and the macroscopic performances exhibited by undoped tin oxide gas sensors deposited by spray pyrolysis, Hall effect measurements were performed at different temperatures, from room temperature up to 500 K, and in the presence of two different atmospheres, air and methane. From these measurements, it was possible to infer the potential barrier and its dependence with the used atmosphere. The obtained results were analysed in terms of the oxygen mechanism at grain boundaries on the basis of the grain boundary-trapping model. In the presence of methane gas, the electrical resistivity decreases due to the lowering of the inter-grain boundary barrier height.

Barquinha, P., Fortunato Gonçalves Pimentel Marques Pereira Martins E. A. A. "A study on the electrical properties of ZnO based transparent TFTs." Materials Science Forum. 514-516 (2006): 68-72. AbstractWebsite

The purpose of this work is to present in-depth electrical characterization on transparent TFTs, using zinc oxide produced at room temperature as the semiconductor material. Some of the studied aspects were the relation between the output conductance in the post-pinch-off regime and width-to-length ratios, the gate leakage current, the semiconductor/insulator interface traps density and its relation with threshold voltage. The main point of the analysis was focused on channel mobility. Values extracted using different methodologies, like effective, saturation and average mobility, are presented and discussed regarding their significance and validity. The evolution of the different types of mobility with the applied gate voltage was investigated and the obtained results are somehow in disagreement with the typical behavior found on classical silicon based MOSFETs, which is mainly attributed to the completely different structures of the semiconductor materials used in the two situations: while in MOSFETS we have monocrystalline silicon, our transparent TFTs use poly/nanocrystalline zinc oxide with grain sizes of about 10 nm.

Bregman, J.a, Gordon Shapira Fortunato Martins Guimaraes J. a Y. a. "Substrate effect on the electrical properties of a-Si:H thin films and its modification by diffusion-blocking interlayers." Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 7 (1989): 2628-2631. AbstractWebsite

Electrical dark conductivity (σd) and surface composition of undoped and doped a-Si:H thin films have been investigated, using coplanar I−V as a function of temperature and Auger electron spectroscopy (AES). The films were prepared by rf glow discharge deposition on standard soda-lime glass and on alkali-free glass substrates. Comparing these two sets of substrates for undoped films, we find that σd of the films deposited on soda-lime glass substrates at room temperature is higher by more than two orders of magnitude, their activation energy is lower by about a factor of 3, and their photosensitivity (σph/σd) is lower by two orders of magnitude than that of the films deposited on alkali-free glass substrates. We suggest that Na ions, leached from the glass into the a-Si:H overlayer play a significant role in determining the film conductivity by creating electrically active donorlike states. This conclusion is supported by similar measurements on p- and n-type a-Si:H films on the same substrates and by AES results. Films of a-Si:H, grown on thin a-Si:C:H interlayers on soda-lime glass, showed very low Na concentrations and low dark conductivities as found by AES and electrical measurements, respectively. The role of the a-Si:C:H interlayers as diffusion barriers is discussed. © 1989, American Vacuum Society. All rights reserved.

d Deuermeier, J.a b, Bayer Yanagi Kiazadeh Martins Klein Fortunato T. J. M. b. "Substrate reactivity as the origin of Fermi level pinning at the Cu2O/ALD-Al2O3 interface." Materials Research Express. 3 (2016). AbstractWebsite

The reduction of aCu2O layer on copper by exposure toTMAduring the atomic layer deposition of Al2O3 has recently been reported. (Gharachorlou et al 2015 ACS Appl. Mater. Interfaces 7 16428-16439). The study presented here analyzes a similar process, leading to the reduction of a homogeneous Cu2O thin film, which allows for additional observations. Angle-resolved in situ X-ray photoelectron spectroscopy confirms the localization of metallic copper at the interface. The evaluation of binding energy shifts reveals the formation of aCu2O/Cu Schottky barrier, which gives rise to Fermi level pinning in Cu2O. An initial enhancement of the ALD growth per cycle (GPC) is only observed for bulk Cu2O samples and is thus related to lattice oxygen, originating from regions lying deeper than just the first few layers of the surface. The oxygen out-take from the substrate is limited to the first few cycles, which is found to be due to a saturated copper reduction, rather than the oxygen diffusion barrier of Al2O3. © 2016 IOP Publishing Ltd.

Águas, H., Pereira Costa Fortunato Martins L. D. E. "Super linear position sensitive detectors using MIS structures." Optical Materials. 27 (2005): 1088-1092. AbstractWebsite

This work reports on the fabrication process and performances presented by metal insulator semiconductor (MIS) linear position sensitive detectors (PSD) with an active length of 6 cm. The use of long sensitive areas allows the PSD to achieve higher resolution without the need of a highly accurate light spot integration mechanism. The PSD is built in a multilayered structure consisting of Cr/a-Si:H (n+ doped)/a-Si:H (intrinsic)/SiOx (passivation layer)/Au, where the active a-Si:H layers were deposited by a modified triode plasma enhanced chemical vapour deposition (MTPECVD), which allows the deposition of highly electronic grade material with a low (≈ × 1015 cm-3) defect density inferred by CPM. The sensor linearity and sensitivity shows dependence on the sensor width to length ratio and on the value of load resistance. Sensitivities of more than 30 mV/cm were achieved with linearity near 99%. Besides that, this type of MIS structure allows an improved spectral response near the UV region and has the maximum response at 540 nm. © 2004 Published by Elsevier B.V.

Fortunato, E., Godinho Santos Marques Assunção Pereira Águas Ferreira Martins M. H. H. "Surface modification of a new flexible substrate based on hydroxypropylcellulose for optoelectronic applications." Thin Solid Films. 442 (2003): 127-131. AbstractWebsite

In this paper, we present the preliminary results concerning the deposition of highly transparent and conductive gallium-doped zinc oxide (GZO) deposited on transparent flexible substrate based on cellulose derivatives. Prior to the deposition of the GZO film, the surface of the polymer have been coated with a thin silicon dioxide (SiO2) layer deposited by thermal evaporation assisted by an electron gun. By doing this surface treatment, we succeeded in depositing highly conductive and transparent GZO with an electrical resistivity of 2.0 × 10-3 Ω cm and an average optical transmittance in the visible part of the spectrum (400-700 nm) of 70% by r.f. magnetron sputtering at room temperature. Besides the optoelectronic properties, the films are mechanically stable with a polycrystalline structure with a strong preferred (002) orientation, parallel to the substrate. © 2003 Elsevier B.V. All rights reserved.

Mei, S., Yang Monteiro Martins Ferreira J. R. R. "Synthesis, characterization, and processing of cordierite-glass particles modified by coating with an alumina precursor." Journal of the American Ceramic Society. 85 (2002): 155-160. AbstractWebsite

The surfaces of cordierite and glass particles were modified by coating them with an alumina precursor using a precipitation process in the presence of urea. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy, X-ray diffraction, electrophoresis, and rheological measurements were used to characterize the coated powders. SEM and transmission electron microscopy morphologies of the coated powders revealed that amorphous and homogeneous coatings have been formed around the particles. The morphology of the coated powders showed a coiled wormlike surface. The coating Al2O3 layer dominated the surface properties of the coated glass and cordierite powders. The influence of the coating layer on the processing ability of cordierite-based glass-ceramics substrates by tape casting was studied in aqueous media. It could be concluded that the coating of the powders facilitates the processing and yields green and sintered tapes with denser, more homogeneous microstructures compared with the uncoated powders.