Publications

Export 28 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Fortunato, E., Barquinha Pereira Gonçalves Martins P. L. G. "Multicomponent wide band gap oxide semiconductors for thin film transistors." Proceedings of International Meeting on Information Display. Vol. 2006. 2006. 605-608. Abstract

The recent application of wide band gap oxide semiconductors to transparent thin film transistors (TTFTs) is making a fast and growing (r)evolution on the contemporary solid-state electronics. In this paper we present some of the recent results we have obtained using wide band gap oxide semiconductors, like indium zinc oxide, produced by rf sputtering at room temperature. The devices work in the enhancement mode and exhibit excellent saturation drain currents. On-off ratios above 106 are achieved. The optical transmittance data in the visible range reveals average transmittance higher than 80%, including the glass substrate. Channel mobilities are also quite respectable, with some devices presenting values around 25 cm2/Vs, even without any annealing or other post deposition improvement processes. The high performances presented by these TTFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

Fortunato, E., Gonçalves Marques Pimentel Barquinha Águas Pereira Raniero Gonçalves Ferreira Martins A. A. A. "Multifunctional thin film zinc oxide semiconductors: Application to electronic devices." Materials Science Forum. 514-516 (2006): 3-7. AbstractWebsite

In this paper we report some of the recent advances in transparent thin film oxide semiconductors, specifically zinc oxide (ZnO), produced by rf magnetron sputtering at room temperature with multifunctional properties. By controlling the deposition parameters it is possible to produce undoped material with electronic semiconductor properties or by doping it to get either n-type or p-type semiconductor behavior. In this work we refer our experience in producing n-type doping ZnO as transparent electrode to be used in optoelectronic applications such as solar cells and position sensitive detectors while the undoped ZnO can be used as UV photodetector or ozone gas sensor or even as active layer of fully transparent thin film transistors.

Bahubalindruni, G.a, Duarte Tavares Barquinha Martins Fortunato De Oliveira C. a V. G. "Multipliers with transparent a-GIZO TFTs using a neural model." 2012 20th Telecommunications Forum, TELFOR 2012 - Proceedings. 2012. 955-958. Abstract

This paper presents the results of a preliminary study to examine the ability of post-silicon devices for analog processing. It is focused on the latest thin-film transistors (TFTs) with amorphous gallium-indium-zinc oxide (a-GIZO) as active layer. Three circuit configurations are presented: a differential pair and two multiplier topologies. Both triode and saturation regions of operation are included in the analysis, with the devices set to remain in strong accumulation. A neural model, which is developed based on the measured data of the TFTs, is used for the circuit simulations in the Cadence Virtuoso environment. The analog multipliers simulation results are compared against the expected functional results. © 2012 IEEE.