CURRENT TRANSPORT IN METAL-AMORPHOUS SEMICONDUCTOR RECTIFYING DEVICES. ITS APPLICATIONS TO SOLAR CELLS.

Citation:
Martins, R., Guimaraes L. "CURRENT TRANSPORT IN METAL-AMORPHOUS SEMICONDUCTOR RECTIFYING DEVICES. ITS APPLICATIONS TO SOLAR CELLS." Commission of the European Communities, (Report) EUR. 1984. 146-150.

Abstract:

The current transport in metal-amorphous semiconductor barriers is examined by solving the proper Poisson's equation and transport equations within the semiconductor's space charge region taking into account the role of trap shallow states distribution function. The effect of metal is also included through appropriate boundary conditions of the above solutions. Generalized transport equations will be derived either when thermionic drift-diffusion emission process dominates or when the conduction mechanism is mainly due to drift-diffusion emission. Both situations will be analysed with or without neglecting carriers losses during their collision free path, from which a tractable expression for the current-voltage characteristic will be determined.

Notes:

cited By 0

Related External Link