O Portal do docente é uma ferramenta de apoio que permite a cada Professor da FCT NOVA criar autonomamente a sua página pessoal e aí inserir o seu curriculum, divulgar artigos científicos, apresentar as disciplinas leccionadas, partilhar feeds, etc.
SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two ironcentre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8 x 10(7) M(-1) . s(-1) and 1.3 x 10(6) M(-1) . s(-1) for SOR(Fe(IIII)-Fe(II)) and for SOR(Fe(IIII)-Fe(III)) forms respectively, and 3.2 x 10(6) M(-1) s(-1) for the SOR(Zn(II)-Fe(III)) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.
Domingues, T., J. R. Fernandes, and L. B. Oliveira. "Oscillator noise budget for ADC systems." Mixed Design of Integrated Circuits and Systems (MIXDES), 2011 Proceedings of the 18th International Conference. IEEE, 2011. 358-361. Abstract
n/a
Moutinho, Filipe, Lu{\'ı}s Gomes, Paulo E. S. Barbosa, João Paulo Barros, Franklin Ramalho, Jorge Figueiredo, Anikó Costa, and André Monteiro. "Petri Net Based Specification and Verification of Globally-Asynchronous-Locally-Synchronous System." Technological Innovation for Sustainability - Second {IFIP} {WG} 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, February 21-23, 2011. Proceedings. 2011. 237-245. Abstract
Barbosa, Paulo E. S., João Paulo Barros, Franklin Ramalho, Lu{\'ı}s Gomes, Jorge Figueiredo, Filipe Moutinho, Anikó Costa, and André Aranha. "SysVeritas: {A} Framework for Verifying {IOPT} Nets and Execution Semantics within Embedded Systems Design." Technological Innovation for Sustainability - Second {IFIP} {WG} 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, February 21-23, 2011. Proceedings. 2011. 256-265. Abstract
The two-photon absorption of few-electron ions has been studied by using second-order perturbation theory and Dirac's relativistic equation. Within this framework, the general expressions for the excitation cross sections and rates are derived including a full account of the higher-order multipole terms in the expansion of the electron-photon interaction. While these expressions can be applied to any ion, independent of its particular shell structure, detailed computations are carried out for the two-photon absorption of hydrogen-, helium-, and berylliumlike ions and are compared with the available theoretical and experimental data. The importance of relativistic and nondipole effects in the analysis and computation of induced two-photon transitions is pointed out. Moreover, we discuss the potential of these transitions for atomic parity-violation studies in the high-Z domain.
The two-photon absorption of few-electron ions has been studied by using second-order perturbation theory and Dirac's relativistic equation. Within this framework, the general expressions for the excitation cross sections and rates are derived including a full account of the higher-order multipole terms in the expansion of the electron-photon interaction. While these expressions can be applied to any ion, independent of its particular shell structure, detailed computations are carried out for the two-photon absorption of hydrogen-, helium-, and berylliumlike ions and are compared with the available theoretical and experimental data. The importance of relativistic and nondipole effects in the analysis and computation of induced two-photon transitions is pointed out. Moreover, we discuss the potential of these transitions for atomic parity-violation studies in the high-Z domain.