Export 3109 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Guillaume, A., F. Costa, and O. Mateus. "Skin impressions on stegosaur tracks from the Upper Jurassic of Portugal." Abstract book of the XV Encuentro de Jóvenes Investigadores en Paleontolog{\'ıa/XV Encontro de Jovens Investigadores em Paleontologia, Lisboa, 428 pp. 2017. 191-195. Abstract
n/a
Guillaume, A., F. Costa, and O. Mateus. "Skin impressions on stegosaur tracks from the Upper Jurassic of Portugal." 2017. 191-195. Abstract
n/a
Araújo, João, and Peter J. Cameron. "Special issue on computational algebra." Port. Math.. 74 (2017): 171-172. AbstractWebsite
n/a
Romão, MJ, C. Coelho, T. Santos-Silva, A. Foti, M. Terao, E. Garattini, and S. Leimkühler. "Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics." Current Opinion in Chemical Biology. 37 (2017): 39-47. Abstract
n/a
Micaelo, R., A. Guerra, L. Quaresma, and M. T. Cidade. "Study of the effect of filler on the fatigue behaviour of bitumen-filler mastics under DSR testing." Construction and Building Materials. 155 (2017): 228-238. AbstractWebsite
n/a
Marzola, M., O. Mateus, J. Milàn, and {L. B. } Clemmensen. "Synrift sedimentary deposition and vertebrate fossil abundance: the tetrapod record from Greenland." 2017. 159-160. Abstract
n/a
Marques, Filipe J., Carlos A. Coelho, and Paulo C. Rodrigues. "Testing the equality of several linear regression models." Computational Statistics. 32 (2017): 1453-1480. Abstract
n/a
Trindade, Ana Catarina, Rita Craveiro, Ana PC Almeida, João P. Canejo, Alexandre Paiva, Susana Barreiros, and Helena M. Godinho. "Tuning surface wrinkles of Janus spheres in supercritical carbon dioxide." The Journal of Supercritical Fluids. 120 (2017): 125-131. Abstract
n/a
Ripple, W. J., C. Wolf, T. M. Newsome, M. Galetti, M. Alamgir, E. Crist, M. I. Mahmoud, W. F. Laurance, and +15364 signatoriesscientist. "World Scientists’ Warning to Humanity: A Second Notice." BioScience. 125 (2017). Abstract
n/a
Pimentel, A., A. Araújo, B. J. Coelho, D. Nunes, M. J. Oliveira, MJ Mendes, H. Águas, R. Martins, and E. Fortunato. "{3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms}." Materials. 10 (2017). Abstract

© 2017 by the authors. In the present study, zinc oxide (ZnO) nanorods (NRs) with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/or quality control devices. This class of substrates also enables highly-sensitive Raman molecular detection, amiable to several different operational environments and target surfaces. The structural characterization of the ZnO NR arrays has been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical measurements. The effects of the synthesis time (5-30 min) and temperature (70-130 °C) of the ZnO NR arrays decorated with silver nanoparticles (AgNPs) have been investigated in view of their application for surface-enhanced Raman scattering (SERS) molecular detection. The size and density of the ZnO NRs, as well as those of the AgNPs, are shown to play a central role in the final SERS response. A Raman enhancement factor of 7 × 105was obtained using rhodamine 6 G (RG6) as the test analyte; a ZnO NR array was produced for only 5 min at 70 °C. This condition presents higher ZnO NR and AgNP densities, thereby increasing the total number of plasmonic "hot-spots", their volume coverage and the number of analyte molecules that are subject to enhanced sensing.

Duarte, Ana Rita C., Ana Sofia D. Ferreira, Susana Barreiros, Eurico Cabrita, Rui L. Reis, and Alexandre Paiva. "{A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies}." European Journal of Pharmaceutics and Biopharmaceutics. 114 (2017): 296-304. AbstractWebsite

THEDES, so called therapeutic deep eutectic solvents are here defined as a mixture of two components, which at a particular molar composition become liquid at room temperature and in which one of them is an active pharmaceutical ingredient (API). In this work, THEDES based on menthol complexed with three different APIs, ibuprofen (ibu), BA (BA) and phenylacetic acid (PA), were prepared. The interactions between the components that constitute the THEDES were studied by NMR, confirming that the eutectic system is formed by H-bonds between menthol and the API. The mobility of the THEDES components was studied by PFGSE NMR spectroscopy. It was determined that the self-diffusion of the species followed the same behavior as observed previously for ionic liquids, in which the components migrate via jumping between voids in the suprastructure created by punctual thermal fluctuations. The solubility and permeability of the systems in an isotonic solution was evaluated and a comparison with the pure APIs was established through diffusion and permeability studies carried out in a Franz cell. The solubility of the APIs when in the THEDES system can be improved up to 12 fold, namely for the system containing ibu. Furthermore, for this system the permeability was calculated to be 14 × 10−5 cm/s representing a 3 fold increase in comparison with the pure API. With the exception of the systems containing PA an increase in the solubility, coupled with an increase in permeability was observed. In this work, we hence demonstrate the efficiency of THEDES as a new formulation for the enhancement of the bioavailability of APIs by changing the physical state of the molecules from a solid dosage to a liquid system.

Otero, V., M. F. Campos, JV Pinto, M. Vilarigues, L. Carlyle, and M. J. Melo. "{Barium, zinc and strontium yellows in late 19th-early 20th century oil paintings}." Heritage Science. 5 (2017). Abstract

© 2017 The Author(s). This work focuses on the study of the 19th century yellow chromate pigments based on barium (BaCrO4), zinc (4ZnCrO4K2O3H2O) and strontium (SrCrO4). These pigments, which are reported to shift in hue and darken, have been found in 19th century artworks. A better understanding of their historic manufacture will contribute to the visual/chemical interpretation of change in these colours. Research was carried out on the Winsor & Newton (W&N) 19th century archive database providing a unique insight into their manufacturing processes. One hundred and three production records were found, 69% for barium, 25% for zinc and 6% for strontium chromates, mainly under the names Lemon, Citron and Strontian Yellow, respectively. Analysis of the records shows that each pigment is characterised by only one synthetic pathway. The low number of records found for the production of strontium chromate suggests W&N was not selling this pigment formulation on a large scale. Furthermore, contrary to what the authors have discovered for W&N chrome yellow pigments, extenders were not added to these pigment formulations, most probably due to their lower tinting strength (TS). The latter was calculated in comparison to pure chrome yellow (PbCrO4, 100% TS) resulting in 92% for barium, 65% for zinc potassium and 78% for strontium chromate pigments. This indicates that W&N was probably using extenders primarily to adjust pigment properties and not necessarily as a means to reduce their costs. Pigment reconstructions following the main methods of synthesis were characterised by complementary analytical techniques: Fibre optic reflectance spectroscopy, X-ray diffraction, micro-Raman and micro-Fourier transform infrared spectroscopies. These pigments can be clearly distinguished on the basis of their infrared CrO42-asymmetric stretching fingerprint profile (between 1000 and 700 cm-1) and of their Raman CrO42-stretching bands (850-950 cm-1). This enabled their identification in historic paint samples: a tube of late 19th century W&N Lemon Yellow oil paint and micro-samples from paintings by three Portuguese painters, António Silva Porto (1850-1893), João Marques de Oliveira (1853-1927) and Amadeo de Souza-Cardoso (1887-1918). The good correlation found between the reconstructions and historic samples validates their use as reference materials for future photochemical studies.

Duarte, Rui M., Pedro Varanda, Rui L. Reis, Ana Rita C. Duarte, and Jorge Correia-Pinto. "{Biomaterials and Bioactive Agents in Spinal Fusion}." Tissue Engineering Part B: Reviews. 23 (2017): ten.teb.2017.0072. AbstractWebsite

Management of degenerative spine pathologies frequently leads to the need for spinal fusion (SF), where bone growth is induced toward stabilization of the interventioned spine. Autologous bone graft (ABG) remains the gold-standard inducer, whereas new bone graft substitutes attempt to achieve effective de novo bone formation and solid fusion. Limited fusion outcomes have driven motivation for more sophisticated and multidisciplinary solutions, involving new biomaterials and/or biologics, through innovative delivery platforms. The present review will analyze the most recent body of literature that is focused on new approaches for consistent bone fusion of spinal vertebrae, including the development of new biomaterials that pursue physical and chemical aptitudes; the delivery of growth factors (GF) to accelerate new bone formation; and the use of cells to improve functional bone development. Bone graft substitutes currently in clinical practice, such as demineralized bone matrix and ceramics, are still used as a starting point for the study of new bioactive agents. Polyesters such as polycaprolactone and polylactic acid arise as platforms for the development of composites, where a mineral element and cell/GF constitute the delivery system. Exciting fusion outcomes were obtained in several small and large animal models with these. On what regards bioactive agents, mesenchymal stem cells, preferentially derived from the bone marrow or adipose tissue, were studied in this context. Autologous and allogeneic approaches, as well as osteogenically differentiated cells, have been tested. These cell sources have further been genetically engineered for specific GF expression. Nevertheless, results on fusion efficacy with cells have been inconsistent. On the other hand, the delivery of GF (most commonly bone morphogenetic protein-2 [BMP-2]) has provided favorable outcomes. Complications related to burst release and dosing are still the target of research through the development of controlled release systems or alternative GF such as Nel-like molecule-1 (NELL-1), Oxysterols, or COMP-Ang1. Promising solutions with new biomaterial and GF compositions are becoming closer to the human patient, as these evidence high-fusion performance, while offering cost and safety advantages. The use of cells has not yet proved solid benefits, whereas a further understanding of cell behavior remains a challenge.

Salgado, Marta, Filipa Santos, Soraya Rodríguez-Rojo, Rui L. Reis, Ana Rita C. Duarte, and María José Cocero. "{Development of barley and yeast $\beta$-glucan aerogels for drug delivery by supercritical fluids}." Journal of CO2 Utilization. 22 (2017): 262-269. AbstractWebsite

Polysaccharide aerogels are a good alternative as carriers for drug delivery, since they allow high loading of the active compounds in matrices that are non-toxic, biocompatible and from a renewable feedstock. In this work, barley and yeast $\beta$-glucans aerogels were produced by gelation in aqueous solution, followed by solvent exchange and drying with supercritical CO2. First, viscoelastic properties and melting profile of the hydrogels were determined. Then, the obtained aerogels were analyzed regarding morphology, mechanical properties and behavior in physiological fluid. Both in the hydrogels and in the aerogels, big differences were observed between barley and yeast $\beta$-glucans due to their different chain structure and gelation behavior. Finally, impregnation of acetylsalicylic acid was performed at the same time as the drying of the alcogels with supercritical CO2. The release profile of the drug in PBS was analyzed in order to determine the mechanism governing the release from the $\beta$-glucan matrix. 2017 Elsevier Ltd. All rights reserved.

Barros, Alexandre A., Joana M. Silva, Rita Craveiro, Alexandre Paiva, Rui L. Reis, and Ana Rita C. Duarte. "{Green solvents for enhanced impregnation processes in biomedicine}." Current Opinion in Green and Sustainable Chemistry. 5 (2017): 82-87. AbstractWebsite

Supercritical carbon dioxide has been used as a green solvent due to their well-known potential in biomaterials impregnation. The versatility of this technique enables the loading of implants with Active Pharmaceutical Ingredients which present several benefits when compared with traditional techniques to impregnate active compounds. In this review, we have summarized the recent progresses achieved in supercritical CO2assisted impregnation of active compounds and therapeutic deep eutectic systems for biomedical applications.

Gertrudes, A., R. Craveiro, Z. Eltayari, R. L. Reis, A. Paiva, and A. R. C. Duarte. "{How Do Animals Survive Extreme Temperature Amplitudes? the Role of Natural Deep Eutectic Solvents}." ACS Sustainable Chemistry and Engineering. 5 (2017). Abstract

© 2017 American Chemical Society. Recent findings have reported the reason why some living beings are able to withstand the huge thermal amplitudes between winter and summer in their natural habitats. They are able to produce metabolites decreasing deeply the crystallization temperature of water, avoiding cell disrupture due to the presence of ice crystals and overcoming osmotic effects. In vitro, the possibility to cool living cells and tissues to cryogenic temperatures in the absence of ice can be achieved through a vitrification process. Vitrification has been suggested as an alternative approach to cryopreservation and could hereafter follow an interesting biomimetic perspective. The metabolites produced by these animals are mostly sugars, organic acids, choline derivatives, or urea. When combined at a particular composition, these compounds form a new liquid phase which has been defined as Natural Deep Eutectic Solvents (NADES). In this review, we relate the findings of different areas of knowledge from evolutive biology, cryobiology, and thermodynamics and give a perspective to the potential of NADES in the development of new cryoprotective agents.

Pohl, Randolf, Fran{\c c}ois Nez, Luis M. P. Fernandes, Marwan Abdou Ahmed, Fernando D. Amaro, Pedro Amaro, Fran{\c c}ois Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Beatrice Franke, Sandrine Galtier, Adolf Giesen, Andrea L. Gouvea, Johannes Götzfried, Thomas Graf, Theodor W. Hänsch, Malte Hildebrandt, Paul Indelicato, Lucile Julien, Klaus Kirch, Andreas Knecht, Paul Knowles, Franz Kottmann, Julian J. Krauth, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Jorge Machado, Cristina M. B. Monteiro, Fran{\c c}oise Mulhauser, Tobias Nebel, Paul Rabinowitz, Joaquim M. F. dos Santos, José Paulo Santos, Lukas A. Schaller, Karsten Schuhmann, Catherine Schwob, Csilla I. Szabo, David Taqqu, João F. C. A. Veloso, Andreas Voss, Birgit Weichelt, and Aldo Antognini. "{Laser Spectroscopy of Muonic Atoms and Ions}." Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP2016). Journal of the Physical Society of Japan, 2017. Abstract
n/a
Otero, V., J. V. V. Pinto, L. Carlyle, M. Vilarigues, M. Cotte, and M. J. J. Melo. "{Nineteenth century chrome yellow and chrome deep from Winsor & NewtonTM}." Studies in Conservation. 62 (2017): 123-149. AbstractWebsite

The Winsor & NewtonTM (W&N) nineteenth century archive database includes digitised images of hand- written instructions and workshop notes for the manufacture of their artists' materials. For the first time, all 183 production records for yellow lead chromate pigments were studied and evaluated. They revealed that W&N produced essentially three pigment types: lemon/pale based on mixed crystals of lead chromate and lead sulphate [Pb(Cr,S)O4]; middle on pure monoclinic lead chromate [PbCrO4]; and deep that contains the latter admixed with basic lead chromate [Pb2CrO5]; accounting for 53, 22, and 21% of the production, respectively. Production records for primrose (4%) were also included since the formulation results in mixed crystals with a high percentage of lead sulphate, which, according to the literature, leaves it more prone to degradation. Each pigment type is characterised by only one or two main synthetic pathways; process variations reveal a systematic and thorough search for a high-quality durable product. A comparison of the chemical composition of pigment reconstructions with early W&N oil paint tubes showed that their records entitled ‘pale' and ‘lemon' correlated with the pigment in their tube labelled chrome yellow and, ‘middle' and ‘deep' with the label chrome deep. Lemon and middle pigment formulations were made into oil paints to assess their relative photo-stability. The degradation process was followed by colorimetry and was studied by synchrotron radiation-based techniques. Based on the X-ray absorption spectroscopy data, the possibility for creating a stability index for chrome yellows is discussed. Keywords:

Salgado, M., S. Rodríguez-Rojo, R. L. Reis, M. J. Cocero, and A. R. C. Duarte. "{Preparation of barley and yeast $\beta$-glucan scaffolds by hydrogel foaming: Evaluation of dexamethasone release}." Journal of Supercritical Fluids (2017). Abstract

© 2017 Elsevier B.V. Porous polymeric materials are studied in tissue engineering, because they can act as support for cell proliferation and as drug delivery vehicles for regeneration of tissues. Hydrogel foaming with supercritical CO 2 is a suitable alternative for the creation of these structures, since it avoids the use of organic solvents and high temperature in the processing. In this work, $\beta$-glucans were used as raw materials to create hydrogels due to their easily gelation and biological properties. The enhancement of porosity was generated by a fast decompression after keeping the hydrogels in contact with CO 2 . The effect of the processing conditions and type of $\beta$-glucan in the final properties was assessed regarding morphological and mechanical properties. Finally, the ability of these materials to sustainably deliver dexamethasone was evaluated. The scaffolds had good morphology and provided a controlled release, thus being suitable to be used as scaffolds and drug delivery vehicles.

2016
Doutor, Paulo, Paula Rodrigues, Maria Ceu do Soares, and Fabio A. C. C. Chalub. "Optimal vaccination strategies and rational behaviour in seasonal epidemics." JOURNAL OF MATHEMATICAL BIOLOGY. 73 (2016): 1437-1465. Abstract

n/a

Cardoso, Pedro, Pedro Amaro, Jose Paulo Santos, Joaquim T. de Assis, and Maria Luisa Carvalho. "Determination of Nickel and Manganese Contaminants in Pharmaceutical Iron Supplements using Energy Dispersive X-ray Fluorescence." Applied Spectroscopy (2016). AbstractWebsite

In this study, we investigate the capability of energy dispersive X-ray fluorescence (EDXF) spectrometry in a triaxial geometry apparatus as a fast and nondestructive determination method of both dominant and contaminant elements in pharmaceutical iron supplements. The following iron supplements brands with their respective active ingredients were analyzed: Neutrofer fólico (iron gylcinate), Anemifer (iron(II) sulfate monohydrate), Noripurum (iron(III)-hydroxide polymaltose complex), Sulferbel (iron(II) sulfate monohydrate), and Combiron Fólico (carbonyl iron). Although we observe a good agreement between the iron content obtained by the present method and that indicated in the supplement's prescribed dose, we observe contamination by manganese and nickel of up to 180 μg and 36 μg, respectively. These contents correspond to 7.2% and 14.4% of the permitted daily exposure of manganese and nickel, respectively, for an average adult individual as determined by the European Medicine Agency (EMEA). The method was successfully validated against the concentrations of several certified reference materials of biological light matrices with similar concentrations of contaminants. Moreover, we also validated our method by comparing the concentrations with those obtained with the inductively coupled plasma-atomic emission technique.

Pohl, R., and CREMA Collaboration. "Laser Spectroscopy of Muonic Atoms and Ions." JPS Conf. Proc. (2016): 1-12. AbstractWebsite
n/a
Almeida, Bernardo F., Isabel Correia, and Francisco Saldanha-da-Gama. "Priority-based heuristics for the multi-skill resource constrained project scheduling problem." Expert Systems with Applications. 57 (2016): 91-103. AbstractWebsite
n/a
Branquinho, Rita, Ana Santa, Emanuel Carlos, Daniela Salgueiro, Pedro Barquinha, Rodrigo Martins, and Elvira Fortunato. "{Solution Combustion Synthesis: Applications in Oxide Electronics}." Developments in Combustion Technology. Eds. Kyprianidis G. Konstantinos, and Jan Skvaril. InTech, 2016. 397-417. Abstract

Oxide-based electronics have been well established as an alternative to silicon technology; however, typical processing requires complex, high-vacuum equipment, which is a major drawback, particularly when targeting low-cost applications. The possibility to deposit the materials by low-cost techniques such as inkjet printing has drawn tremendous interest in solution processible materials for electronic applications; however, high processing temperatures still required. To overcome this issue, solution combustion synthesis has been recently pursued. Taking advantage of the exothermic nature of the reaction as a source of energy for localized heating, the precursor solutions can be converted into oxides at lower process temperatures. Theoretically, this can be applied to any metal ions to produce the desired oxide, opening unlimited possibilities to materials' composition and combinations. Solution combustion synthesis has been applied for the production of semiconductor thin films based on ZnO, In2O3, SnO2 and combinations of these oxides, and also for high $ąppa$ dielectrics (Al2O3). All of which are required for numerous electronic devices and applications such as fully oxide-based thin-film transistors (TFTs). The properties of produced thin films are highly dependent on the precursor solution characteristics; hence, the influence of several processing parameters; organic fuel, solvent and annealing temperature was studied. Although precursor solution degradation/oxide formation mechanisms are not yet fully understood, particularly for thin films, we demonstrate that high-performance devices are obtained with combustion solution-based metal oxide thin films. The results clearly show that solution combustion synthesis is becoming one of the most promising methods for low-temperature flexible electronics.

Lorenz, M., et al. "{The 2016 oxide electronic materials and oxide interfaces roadmap}." Journal of Physics D: Applied Physics. 49 (2016): 433001. AbstractWebsite

Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on 'oxide electronic materials and oxide interfaces'. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action 'towards oxide-based electronics' which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements.