Prabakaran, R., T. Monteiro, M. Peres, A. S. Viana, AF Da Cunha, H. Águas, A. Gonçalves, E. Fortunato, R. Martins, and I. Ferreira. "
Optical and structural analysis of porous silicon coated with GZO films using rf magnetron sputtering."
Thin Solid Films. 515.24 (2007): 8664-8669.
Abstractn/a
Alferes, {José Júlio}, and Ricardo Amador. "
r3- A foundational ontology for reactive rules."
On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS - OTM Confederated International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007, Proceedings. PART 1 ed. Vol. 4803 LNCS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4803 LNCS. 2007. 933-952.
Abstractn/a
Aguas, H., Pereira Costa Raniero Fortunato Martins L. D. L. "
Role of the oxide layer on the performances of a-Si:H schottky structures applied to PDS fabrication."
Materials Research Society Symposium Proceedings. Vol. 910. 2007. 415-420.
AbstractIn this work we present results of studies performed on Schottky and metal-insulator-semiconductor (MIS) position sensitive detectors (PSD) structures: substrate (glass)/ Cr (300 nm) / a-Si:H [n] (37 nm) / a-Si:H [i] (600 nm) / SiO2 (1.5 nm - for the MIS) / Au (7 nm). The effect of the interfacial oxide layer between Au and a-Si:H, for the MIS structures, was studied and compared with the Schottky, in order to determine how beneficial it could be for device performances and time degradation. For doing so, the Au thickness of 70Å was deposited by thermal evaporation on an oxide free (Schottky) and oxidized (≈20Å) (MIS) a-Si:H surfaces. These structures were characterized by SIMS, RBS, SEM and AFM in order to correlate the obtained diffusion profile of Au at the interface and the topography with the presence of the oxide at the interface. The results show that the Au inter-diffuses very easily in the oxide free a-Si:H surface, even at room temperature, degrading the devices performance. On the other hand, the MIS structures, with their interfacial oxide present no structural changes after annealing and the PSD produced are stable. We believe that this effect is associated with the barrier effect of the interfacial oxide that prevents the Au diffusion. The optimized 1D MIS sensors are stable and exhibit a linearity error as low as 0.8 % and sensitivities of 33 mV/cm for a 5 mW spot beam intensity at a wavelength of 532 nm, while the Schottky sensors showed a time degradation of their characteristics. © 2006 Materials Research Society.