O Portal do docente é uma ferramenta de apoio que permite a cada Professor da FCT NOVA criar autonomamente a sua página pessoal e aí inserir o seu curriculum, divulgar artigos científicos, apresentar as disciplinas leccionadas, partilhar feeds, etc.
We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic states used for the calculations are obtained by making use of the finite basis-set method and expressed in terms of B splines and B polynomials. We pay particular attention to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons, while symmetric with respect to the scattering angle θ=90∘ within the electric dipole approximation, becomes asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy range 0.5 to 10 keV. When possible, results are compared with previous calculations.
The 1s2s 3S1 ! 1s2 1S0 relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.
The 1s2s 3S1 - 1s2 1S0 relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.
TiO2 films with enhanced photosensitivity were deposited on alkali free glass substrates without intentional substrate heating by pulsed DC magnetron reactive sputtering with an average thickness of about 2 mu m. Three dyes, commercial N719 and two new organic dyes were impregnated in order to control the optical spectral selectivity of such films. The type of dye used proved to dramatically influence the device's response to radiation pulses. The practical breakthrough is the use of different dyes according to the region of the electromagnetic spectrum one wants to detect. Devices with photocurrent 6 orders of magnitude higher than the dark current (from similar to 2 x 10(-12) to 2 x 10(-6) A for a 100 V bias) were fabricated with a spectral response within the visible range of the electromagnetic spectrum. In addition, this approach is likely to allow for the fabrication of hybrid photodetectors on cheap heat sensible flexible polymeric substrates. (C) 2011 Elsevier B.V. All rights reserved.
TiO2 films with enhanced photosensitivity were deposited on alkali free glass substrates without intentional substrate heating by pulsed DC magnetron reactive sputtering with an average thickness of about 2 mu m. Three dyes, commercial N719 and two new organic dyes were impregnated in order to control the optical spectral selectivity of such films. The type of dye used proved to dramatically influence the device's response to radiation pulses. The practical breakthrough is the use of different dyes according to the region of the electromagnetic spectrum one wants to detect. Devices with photocurrent 6 orders of magnitude higher than the dark current (from similar to 2 x 10(-12) to 2 x 10(-6) A for a 100 V bias) were fabricated with a spectral response within the visible range of the electromagnetic spectrum. In addition, this approach is likely to allow for the fabrication of hybrid photodetectors on cheap heat sensible flexible polymeric substrates. (C) 2011 Elsevier B.V. All rights reserved.
A partial plesiosauroid skull from the São Gião Formation (Toarcian, Lower Jurassic) of Alhadas, Portugal is re−evaluated and described as a new taxon, Lusonectes sauvagei gen. et sp. nov. It has a single autapomorphy, a broad triangular parasphenoid cultriform process that is as long as the posterior interpterygoid vacuities, and also a unique character combination, including a jugal that contacts the orbital margin, a distinct parasphenoid–basisphenoid suture exposed between the posterior interpterygoid vacuities, lack of an anterior interpterygoid vacuity, and striations on the ventral surface of
the pterygoids. Phylogenetic analysis of Jurassic plesiosauroids places Lusonectes as outgroup to “microcleidid elasmosaurs”, equivalent to the clade Plesiosauridae. Lusonectes sauvagei is the only diagnostic plesiosaur from Portugal, and the westernmost occurrence of any plesiosaurian in Europe.
Superoxide reductases are involved in relevant biological electron transfer reactions related to protection against oxidative stress caused by reactive oxygen species. The electrochemical features of metalloproteins belonging to the three different classes of enzymes were studied by potentio-dynamic techniques (cyclic and square wave voltammetry): desulfoferrodoxin from Desulfovibrio vulgaris Hildenborough, class I superoxide reductases and neelaredoxin from Desulfovibrio gigas and Treponema pallidum, namely class II and III superoxide reductases, respectively. In addition, a small protein, designated desulforedoxin from D. gigas, which has high homology with the N-terminal domain of class I superoxide reductases, was also investigated. A comparison of the redox potentials and redox behavior of all the proteins is presented, and the results show that SOR center II is thermodynamically more stable than similar centers in different proteins, which may be related to an intramolecular electron transfer function.