Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Pereira, P., F. Passos, and H. M. Fino, "Optimization-Based Design of RF-VCOs with Tapered Inductors", Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design, Hershey, PA, USA, IGI Global, pp. 134 - 157, 2015. Abstract

Voltage-Controlled Oscillators (VCOs) are widely used in wireless transceivers. Due to the stringent specifications regarding phase-noise, LC-VCOs are usually adopted. The need for maximizing phase-noise as well as minimizing the power consumption makes imperious the adoption of optimization-based design methodologies. For the optimization of the LC-VCO characteristics, special attention must be paid to the integrated inductor design, since its quality factor may have a strong influence in the LC-VCO phase-noise. Furthermore, designers must ensure that the higher limit of VCO operating frequency is sufficiently below the inductor resonant frequency. In this chapter, a study on the influence of the quality factor of the inductors on the LC-VCO overall behavior is presented. Then, optimization of integrated inductors by exploring the inductor geometric layout is presented. Finally, results obtained for the design of an LC-VCO in 130nm Technology using a previously optimized inductor are presented.

2014
Pereira, P., M. Helena Fino, and M. Ventim-Neves, "Optimal LC-VCO design through evolutionary algorithms", Analog Integrated Circuits and Signal Processing, vol. 78, issue 1: Springer US, pp. 99-109, 2014. AbstractWebsite

The need for implementing low cost, fully integrated RF wireless transceivers has motivated the widespread use CMOS technology. However, in the particular case for voltage-controlled oscillators (VCO) where ever more stringent specifications in terms of phase-noise must be attained, the design of the on-chip LC tank is a challenging task, where fully advantage of the actual technologies characteristics must be pushed to nearly its limits. To overcome phase-noise limitations arising from the low quality factor of integrated inductors, optimization design methodologies are usually used. In this paper a model-based optimization approach is proposed. In this work the characterization of the oscillator behaviour is guaranteed by a set of analytical models describing each circuit element performance. A set of working examples for UMC130 technology, aiming the minimization of both VCO phase noise and power consumption, is addressed. The results presented, illustrate the potential of a GA optimization procedure design methodology yielding accurate and timely efficient oscillator designs. The validity of the results is checked against HSPICE/RF simulations.

2012
Pereira, P., H. Fino, F. Coito, and M. Ventim-Neves, "Optimization-Based Design of Nano-CMOS LC-VCOs", Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2012, vol. 372, Costa de Caparica - Portugal, Springer Boston, pp. 453-464, 2012. Abstract

This paper introduces a variability-aware methodology for the design of LC-VCOs in Nano-CMOS technologies. The complexity of the design as well as the necessity for having an environment offering the possibility for exploring design trade-offs has led to the development of design methodologies based multi-objective optimization procedures yielding the generation of Pareto-optimal surfaces. The efficiency of the process is granted by using analytical models for both passive and active devices. Although physics-based analytical expressions have been proposed for the evaluation of the lumped elements, the variability of the process parameters is usually ignored due to the difficulty to formalize it into an optimization performance index. The usually adopted methodology of considering only optimum solutions for the Pareto surface, may lead to pruning quasi-optimal solutions that may prove to be better, should their sensitivity to process parameter variation be accounted for. In this work we propose starting by generating an extended Pareto surface where both optimum and quasi-optimum solutions are considered. Finally information on the sensitivity to process parameter variations, is used for electing the best design solution.