Publications

Export 19 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Criteria for n(d)-normality of weighted singular integral operators with shifts and slowly oscillating data." Proceedings of the London Mathematical Society. 116.4 (2018): 997-1027 .Website
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Semi-Fredholmness of weighted singular integral operators with shifts and slowly oscillating data." Operator Theory, Operator Algebras, and Matrix Theory. Operator Theory: Advances and Applications, vol. 267. Eds. Carlos André, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa. Basel: Birkhäuser, 2018. 221-246.
2017
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "The index of weighted singular integral operators with shifts and slowly oscillating data." Journal of Mathematical Analysis and Applications. 450 (2017): 606-630.Website
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Necessary Fredholm conditions for weighted singular integral operators with shifts and slowly oscillating data." Journal of Integral Equations and Applications. 29.3 (2017): 365-399.
2016
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "The generalized Cauchy index of some semi-almost periodic functions." Boletín de la Sociedad Matemática Mexicana. 22.2 (2016): 473-485. AbstractWebsite

We compute the generalized Cauchy index of some semi-almost periodic functions, which are important
in the study of the Fredholm index of singular integral operators with shifts and slowly oscillating data.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "On a weighted singular integral operator with shifts and slowly oscillating data." Complex Analysis and Operator Theory. 10.6 (2016): 1101-1131. AbstractWebsite

Let \(\alpha,\beta\) be orientation-preserving diffeomorphism (shifts) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\) and \(U_\alpha,U_\beta\) be the isometric shift operators on \(L^p(\mathbb{R}_+)\) given by \(U_\alpha f=(\alpha')^{1/p}(f\circ\alpha)\), \(U_\beta f=(\beta')^{1/p}(f\circ\beta)\), and \(P_2^\pm=(I\pm S_2)/2\) where \[ (S_2 f)(t):=\frac{1}{\pi i}\int\limits_0^\infty \left(\frac{t}{\tau}\right)^{1/2-1/p}\frac{f(\tau)}{\tau-t}\,d\tau, \quad t\in\mathbb{R}_+, \]
is the weighted Cauchy singular integral operator. We prove that if \(\alpha',\beta'\) and \(c,d\) are continuous on \(\mathbb{R}_+\) and slowly oscillating at \(0\) and \(\ infty\), and \[ \limsup_{t\to s}|c(t)|<1,\quad \limsup_{t\to s}|d(t)|<1, \quad s\in\{0,\infty\}, \] then the operator \((I-cU_\alpha)P_2^++(I-dU_\beta)P_2^-\) is Fredholm on \(L^p(\mathbb{R}_+)\) and its index is equal to zero. Moreover, its regularizers are described.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "One-sided invertibility criteria for binomial functional operators with shift and slowly oscillating data." Mediterranean Journal of Mathematics. 13.6 (2016): 4413-4435.Website
2014
Karlovich, Alexei Yu. "Boundedness of pseudodifferential operators on Banach function spaces." Operator Theory, Operator Algebras and Applications. Operator Theory: Advances and Applications, 242. Eds. Maria Amélia Bastos, Amarino Lebre, Stefan Samko, and Ilya M. Spitkovsky. Basel: Birkhäuser/Springer, 2014. 185-195. Abstract

We show that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space \(X(\mathbb{R}^n)\) and on its associate space \(X'(\mathbb{R}^n)\), then a pseudodifferential operator \(\operatorname{Op}(a)\) is bounded on \(X(\mathbb{R}^n)\) whenever the symbol \(a\) belongs to the Hörmander class \(S_{\rho,\delta}^{n(\rho-1)}\) with \(0<\rho\le 1\), \(0\le\delta<1\) or to the the Miyachi class \(S_{\rho,\delta}^{n(\rho-1)}(\varkappa,n)\) with \(0\le\delta\le\rho\le 1\), \(0\le\delta<1\), and \(\varkappa>0\). This result is applied to the case of variable Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^n)\).

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Fredholmness and index of simplest singular integral operators with two slowly oscillating shifts." Operators and Matrices. 8.4 (2014): 935-955. AbstractWebsite

Let \(\alpha\) and \(\beta\) be orientation-preserving diffeomorphisms (shifts) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\), where the derivatives \(\alpha'\) and \(\beta'\) may have discontinuities of slowly oscillating type at \(0\) and \(\infty\). For \(p\in(1,\infty)\), we consider the weighted shift operators \(U_\alpha\) and \(U_\beta\) given on the Lebesgue space \(L^p(\mathbb{R}_+)\) by \(U_\alpha f=(\alpha')^{1/p}(f\circ\alpha)\) and \(U_\beta f= (\beta')^{1/p}(f\circ\beta)\). We apply the theory of Mellin pseudodifferential operators with symbols of limited smoothness to study the simplest singular integral operators with two shifts \(A_{ij}=U_\alpha^i P_++U_\beta^j P_-\) on the space \(L^p(\mathbb{R}_+)\), where \(P_\pm=(I\pm S)/2\) are operators associated to the Cauchy singular integral operator \(S\), and \(i,j\in\mathbb{Z}\). We prove that all \(A_{ij}\) are Fredholm operators on \(L^p(\mathbb{R}_+)\) and have zero indices.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "On regularization of Mellin PDO's with slowly oscillating symbols of limited smoothness." Communications in Mathematical Analysis. 17.2 (2014): 189-208. AbstractWebsite

We study Mellin pseudodifferential operators (shortly, Mellin PDO's) with symbols in the algebra \(\widetilde{\mathcal{E}}(\mathbb{R}_+,V(\mathbb{R}))\) of slowly oscillating functions of limited smoothness introduced in [K09]. We show that if \(\mathfrak{a}\in\widetilde{\mathcal{E}}(\mathbb{R}_+,V(\mathbb{R}))\) does not degenerate on the ``boundary" of \(\mathbb{R}_+\times\mathbb{R}\) in a certain sense, then the Mellin PDO \(\operatorname{Op}(\mathfrak{a})\) is Fredholm on the space \(L^p\) for \(p\in(1,\infty)\) and each its regularizer is of the form \(\operatorname{Op}(\mathfrak{b})+K\) where \(K\) is a compact operator on \(L^p\) and \(\mathfrak{b}\) is a certain explicitly constructed function in the same algebra \(\widetilde{\mathcal{E}}(\mathbb{R}_+,V(\mathbb{R}))\) such that \(\mathfrak{b}=1/\mathfrak{a}\) on the ``boundary" of \(\mathbb{R}_+\times\mathbb{R}\). This result complements the known Fredholm criterion from [K09] for Mellin PDO's with symbols in the closure of \(\widetilde{\mathcal{E}}(\mathbb{R}_+,V(\mathbb{R}))\) and extends the corresponding result by V.S. Rabinovich (see [R98]) on Mellin PDO's with slowly oscillating symbols in \(C^\infty(\mathbb{R}_+\times\mathbb{R})\).

2011
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Necessary conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data." Integral Equations and Operator Theory. 71.1 (2011): 29-53. AbstractWebsite

Suppose \(\alpha\) is an orientation-preserving diffeomorphism (shift) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\). In [KKL11] we found sufficient conditions for the Fredholmness of the singular integral operator with shift \[(aI-bW_\alpha)P_++(cI-dW_\alpha)P_-\] acting on \(L^p(\mathbb{R}_+)\) with \( 1 < p < \infty\), where \(P_\pm=(I\pm S)/2\), \(S\) is the Cauchy singular integral operator, and \(W_\alpha f=f\circ\alpha\) is the shift operator, under the assumptions that the coefficients \(a,b,c,d\) and the derivative \(\alpha'\) of the shift are bounded and continuous on \(\mathbb{R}_+\) and may admit discontinuities of slowly oscillating type at \(0\) and \(\infty\). Now we prove that those conditions are also necessary.

Karlovich, Alexei Yu, Yuri I. Karlovich, and Amarino B. Lebre. "Sufficient conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data." Integral Equations and Operator Theory. 70.4 (2011): 451-483. AbstractWebsite

Suppose \(\alpha\) is an orientation preserving diffeomorphism (shift) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\). We establish sufficient conditions for the Fredholmness of the singular integral operator with shift \[ (aI-bW_\alpha)P_++(cI-dW_\alpha)P_- \] acting on \(L^p(\mathbb{R}_+)\) with \( 1 < p < \infty \), where \(P_\pm=(I\pm S)/2\), \(S\) is the Cauchy singular integral operator, and \(W_\alpha f=f\circ\alpha\) is the shift operator, under the assumptions that the coefficients \(a,b,c,d\) and the derivative \(\alpha'\) of the shift are bounded and continuous on \(\mathbb{R}_+\) and may admit discontinuities of slowly oscillating type at \(0\) and \(\infty\).

Karlovich, Alexei Yu. "Singular integral operators on Nakano spaces with weights having finite sets of discontinuities." Function spaces IX. Proceedings of the 9th international conference, Kraków, Poland, July 6–11, 2009. Banach Center Publications, 92. Eds. Henryk Hudzik, Grzegorz Lewicki, Julian Musielak, Marian Nowak, and Leszek Skrzypczak. Warszawa: Polish Academy of Sciences, Institute of Mathematics, 2011. 143-166. Abstract

In 1968, Gohberg and Krupnik found a Fredholm criterion for singular integral operators of the form \(aP+bQ\), where \(a,b\) are piecewise continuous functions and \(P,Q\) are complementary projections associated to the Cauchy singular integral operator, acting on Lebesgue spaces over Lyapunov curves. We extend this result to the case of Nakano spaces (also known as variable Lebesgue spaces) with certain weights having finite sets of discontinuities on arbitrary Carleson curves.

2010
Karlovich, Alexei Yu. "Singular integral operators on variable Lebesgue spaces with radial oscillating weights." Operator Algebras, Operator Theory and Applications.Operator Theory Advances and Applications, 195 . Eds. JJ Grobler, LE Labuschagne, and M. Möller. Basel: Birkhäuser, 2010. 185-212. Abstract

We prove a Fredholm criterion for operators in the Banach algebra of singular integral operators with matrix piecewise continuous coefficients acting on a variable Lebesgue space with a radial oscillating weight over a logarithmic Carleson curve. The local spectra of these operators are massive and have a shape of spiralic horns depending on the value of the variable exponent, the spirality indices of the curve, and the Matuszewska-Orlicz indices of the weight at each point. These results extend (partially) the results of A. Böttcher, Yu. Karlovich, and V. Rabinovich for standard Lebesgue spaces to the case of variable Lebesgue spaces.

2009
Karlovich, Alexei Yu. "Asymptotics of Toeplitz matrices with symbols in some generalized Krein algebras." Modern Analysis and Applications: Mark Krein Centenary Conference, Vol. 1. Operator Theory Advances and Applications, 190. Eds. V. Adamyan, Y. Berezansky, I. Gohberg, M. Gorbachuk, V. Gorbachuk, A. Kochubei, H. Langer, and G. Popov. Basel: Birkhäuser, 2009. 341-359. Abstract

Let \(\alpha,\beta\in(0,1)\) and
\[
K^{\alpha,\beta}:=\left\{a\in L^\infty(\mathbb{T}):\
\sum_{k=1}^\infty |\widehat{a}(-k)|^2 k^{2\alpha}<\infty,\
\sum_{k=1}^\infty |\widehat{a}(k)|^2 k^{2\beta}<\infty
\right\}.
\]
Mark Krein proved in 1966 that \(K^{1/2,1/2}\) forms a Banach algebra. He also observed that this algebra is important in the asymptotic theory of finite Toeplitz matrices. Ten years later, Harold Widom extended
earlier results of Gabor Szegö for scalar symbols and established the asymptotic trace formula
\[
\operatorname{trace}f(T_n(a))=(n+1)G_f(a)+E_f(a)+o(1)
\quad\text{as}\ n\to\infty
\]
for finite Toeplitz matrices \(T_n(a)\) with matrix symbols \(a\in K^{1/2,1/2}_{N\times N}\). We show that if \(\alpha+\beta\ge 1\) and \(a\in K^{\alpha,\beta}_{N\times N}\), then the Szegö-Widom asymptotic trace formula holds with \(o(1)\) replaced by \(o(n^{1-\alpha-\beta})\).

2008
Karlovich, Alexei Yu. "Higher-order asymptotic formulas for Toeplitz matrices with symbols in generalized Hölder spaces." Operator Algebra, Operator Theory and Applications. Operator Theory Advances and Applications, 181. Eds. MA Bastos, I. Gohberg, AB Lebre, and FO Speck. Basel: Birkhäuser, 2008. 207-228. Abstract

We prove higher-order asymptotic formulas for determinants and traces of finite block Toeplitz matrices generated by matrix functions belonging to generalized Hölder spaces with characteristic functions from the Bari-Stechkin class. We follow the approach of Böttcher and Silbermann and generalize their results for symbols in standard Hölder spaces.

2005
Karlovich, Alexei Yu., and Andrei K. Lerner. "Commutators of singular integrals on generalized Lp spaces with variable exponent." Publicacions Matematiques. 49.1 (2005): 111-125. AbstractWebsite

A classical theorem of Coifman, Rochberg, and Weiss on commutators of singular integrals is extended to the case of generalized Lp spaces with variable exponent.

2003
Karlovich, Alexei Yu., and Yuri I. Karlovich. "Compactness of commutators arising in the Fredholm theory of singular integral operators with shifts." Factorization, Singular Operators and Related Problems. Eds. Stefan Samko, Amarino Lebre, and António Ferreira dos Santos. Dordrecht: Kluwer Academic Publishers, 2003. 111-129. Abstract

The paper is devoted to the compactness of the commutators \(aS_\Gamma - S_\Gamma aI\) and \(W_\alpha S_\Gamma - S_\Gamma W_\alpha\), where \(S_\Gamma\) is the Cauchy singular integral operator, \(a\) is a bounded measurable function, \(W_\alpha\) is the shift operator given by \(W_\alpha f = f\circ\alpha\), and \(\alpha\) is a bi-Lipschitz homeomorphism (shift). The cases of the unit circle and the unit interval are considered. We prove that these commutators are compact on rearrangement-invariant spaces with nontrivial Boyd indices if and only if the function a or, respectively, the derivative of the shift a has vanishing mean oscillation.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Invertibility of functional operators with slowly oscillating non-Carleman shifts." Singular Integral Operators, Factorization and Applications. Operator Theory: Advances and Applications, 142. Eds. Albrecht Böttcher, Marinus A. Kaashoek, Amarino Brites Lebre, António Ferreira dos Santos, and Frank-Olme Speck. Basel: Birkhäuser, 2003. 147-174. Abstract

We prove criteria for the invertibility of the binomial functional operator
\[
A=aI-bW_\alpha
\]
in the Lebesgue spaces \(L^p(0,1)\), \( 1 < p < \infty\), where \(a\) and \(b\) are continuous functions on \((0,1)\), \(I\) is the identity operator, \(W_\alpha\) is the shift operator, \(W_\alpha f=f\circ\alpha\), generated by a non-Carleman shift \(\alpha:[0,1]\to[0,1]\) which has only two fixed points \(0\) and \(1\). We suppose that \(\log\alpha'\) is bounded and continuous on \((0,1)\) and that \(a,b,\alpha'\) slowly oscillate at \(0\) and \(1\). The main difficulty connected with slow oscillation is overcome by using the method of limit operators.