Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Karlovich, Alexei Yu. "Asymptotics of Toeplitz matrices with symbols in some generalized Krein algebras." Modern Analysis and Applications: Mark Krein Centenary Conference, Vol. 1. Operator Theory Advances and Applications, 190. Eds. V. Adamyan, Y. Berezansky, I. Gohberg, M. Gorbachuk, V. Gorbachuk, A. Kochubei, H. Langer, and G. Popov. Basel: Birkhäuser, 2009. 341-359. Abstract

Let \(\alpha,\beta\in(0,1)\) and
\[
K^{\alpha,\beta}:=\left\{a\in L^\infty(\mathbb{T}):\
\sum_{k=1}^\infty |\widehat{a}(-k)|^2 k^{2\alpha}<\infty,\
\sum_{k=1}^\infty |\widehat{a}(k)|^2 k^{2\beta}<\infty
\right\}.
\]
Mark Krein proved in 1966 that \(K^{1/2,1/2}\) forms a Banach algebra. He also observed that this algebra is important in the asymptotic theory of finite Toeplitz matrices. Ten years later, Harold Widom extended
earlier results of Gabor Szegö for scalar symbols and established the asymptotic trace formula
\[
\operatorname{trace}f(T_n(a))=(n+1)G_f(a)+E_f(a)+o(1)
\quad\text{as}\ n\to\infty
\]
for finite Toeplitz matrices \(T_n(a)\) with matrix symbols \(a\in K^{1/2,1/2}_{N\times N}\). We show that if \(\alpha+\beta\ge 1\) and \(a\in K^{\alpha,\beta}_{N\times N}\), then the Szegö-Widom asymptotic trace formula holds with \(o(1)\) replaced by \(o(n^{1-\alpha-\beta})\).

O
André, Carlos, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa(Eds.) Operator Theory, Operator Algebras, and Matrix Theory. Basel: Birkhäuser, 2018.Website
S
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Semi-Fredholmness of weighted singular integral operators with shifts and slowly oscillating data." Operator Theory, Operator Algebras, and Matrix Theory. Operator Theory: Advances and Applications, vol. 267. Eds. Carlos André, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa. Basel: Birkhäuser, 2018. 221-246.
T
Karlovich, Alexei. "Toeplitz operators between distinct abstract Hardy spaces." Extended Abstracts Fall 2019. Trends in Mathematics, vol 12. Eds. Abakumov E., Baranov A., Borichev A., Fedorovskiy K., and Ortega-Cerdà J. Cham: Birkhäuser, 2021. 105-112.