Publications

Export 81 results:
Sort by: Author Title Type [ Year  (Desc)]
1998
Karlovich, Alexei Yu. "The index of singular integral operators in reflexive Orlicz spaces." Mathematical Notes. 64.3 (1998): 330-341. AbstractWebsite

We consider the Banach algebra \(\mathfrak{A}\) of singular integral operators with matrix piecewise continuous coefficients in the reflexive Orlicz space \(L_M^n(\Gamma)\). We assume that \(\Gamma\) belongs to a certain wide subclass of the class of Carleson curves; this subclass includes curves with cusps, as well as curves of the logarithmic spiral type. We obtain an index formula for an arbitrary operator from the algebra \(\mathfrak{A}\) in terms of the symbol of this operator.

Karlovich, Alexei Yu. "Singular integral operators with piecewise continuous coefficients in reflexive rearrangement-invariant spaces." Integral Equations and Operator Theory. 32 (1998): 436-481. AbstractWebsite

The paper is devoted to some only recently uncovered phenomena emerging in the study of singular integral operators (SIO's) with piecewise continuous (PC) coefficients in reflexive rearrangement-invariant spaces over Carleson curves. We deal with several kinds of indices of submultiplicative functions which describe properties of spaces (Boyd and Zippin indices) and curves (spirality indices). We consider some ``disintegration condition{''} which combines properties of spaces and curves, the Boyd and spirality indices. We show that the essential spectrum of SIO associated with the Riemann boundary value problem with PC coefficient arises from the essential range of the coefficient by filling in certain massive connected sets (so-called logarithmic leaves) between the endpoints of jumps. These results combined with the Allan-Douglas local principle and with the two projections theorem enable us to study the Banach algebra \(\mathfrak{A}\) generated by SIO's with matrix-valued piecewise continuous coefficients. We construct a symbol calculus for this Banach algebra which provides a Fredholm criterion and gives a basis for an index formula for arbitrary SIO's from \(\mathfrak{A}\) in terms of their symbols.

1997
Karlovich, Alexei Yu. "Singular integral operators with regulated coefficients in reflexive Orlicz spaces." Siberian Mathematical Journal. 38.2 (1997): 253-266.Website
1996
Karlovich, Alexei Yu. "Algebras of singular integral operators with piecewise continuous coefficients on reflexive Orlicz spaces." Mathematische Nachrichten. 179 (1996): 187-222. AbstractWebsite

We consider singular integral operators with piecewise continuous coefficients on reflexive Orlicz spaces \(L_M(\Gamma)\), which are generalizations of the Lebesgue spaces \(L_p(\Gamma)\), \(1 < p < \infty\). We suppose that \(\Gamma\) belongs to a large class of Carleson curves, including curves with corners and cusps as well as curves that look locally like two logarithmic spirals scrolling up at the same point. For the singular integral operator associated with the Riemann boundary value problem with a piecewise continuous coefficient \(G\), we establish a Fredholm criterion and an index formula in terms of the essential range of \(G\) complemented by spiralic horns depending on the Boyd indices of \(L_M(\Gamma)\) and contour properties. Our main result is a symbol calculus for the closed algebra of singular integral operators with piecewise continuous matrix-valued coefficients on \(L_M^n(\Gamma)\).

Карлович, Алексей Об алгебре сингулярных интегральных операторов в рефлексивных пространствах Орлича на кривых Карлесона. Краевые задачи, специальные функции и дробное исчисление. Минск: Издательство Университетское, 1996.02_1996_gahov-90_minsk-96.pdf