Publications

Export 119 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Necessary conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data." Integral Equations and Operator Theory. 71.1 (2011): 29-53. AbstractWebsite

Suppose \(\alpha\) is an orientation-preserving diffeomorphism (shift) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\). In [KKL11] we found sufficient conditions for the Fredholmness of the singular integral operator with shift \[(aI-bW_\alpha)P_++(cI-dW_\alpha)P_-\] acting on \(L^p(\mathbb{R}_+)\) with \( 1 < p < \infty\), where \(P_\pm=(I\pm S)/2\), \(S\) is the Cauchy singular integral operator, and \(W_\alpha f=f\circ\alpha\) is the shift operator, under the assumptions that the coefficients \(a,b,c,d\) and the derivative \(\alpha'\) of the shift are bounded and continuous on \(\mathbb{R}_+\) and may admit discontinuities of slowly oscillating type at \(0\) and \(\infty\). Now we prove that those conditions are also necessary.

Karlovich, Alexei Yu., Helena Mascarenhas, and Pedro A. Santos. "Erratum to: Finite section method for a Banach algebra of convolution type operators on Lp(R) with symbols generated by PC and SO (vol 37, pg 559, 2010)." Integral Equations and Operator Theory. 69.3 (2011): 447-449. AbstractWebsite

We correct Theorem 3.2 and Corollary 3.3 from [KMS]. This correction ammounts to the observation that the proof of the main result in [KMS] contains a gap in Lemma~10.6 for \(p\ne 2\). The results of [KMS] are true for \(p=2\).

Karlovich, Alexei Yu, and Ilya M. Spitkovsky. "On singular integral operators with semi-almost periodic coefficients on variable Lebesgue spaces." Journal of Mathematical Analysis and Appliactions. 384.2 (2011): 706-725. AbstractWebsite

Let \(a\) be a semi-almost periodic matrix function with the almost periodic representatives \(a_l\) and \(a_r\) at \(-\infty\) and \(+\infty\), respectively. Suppose \(p:\mathbb{R}\to(1,\infty)\) is a slowly oscillating exponent such that the Cauchy singular integral operator \(S\) is bounded on the variable Lebesgue space \(L^{p(\cdot)}(\mathbb{R})\). We prove that if the operator \(aP+Q\) with \(P=(I+S)/2\) and \(Q=(I-S)/2\) is Fredholm on the variable Lebesgue space \(L_N^{p(\cdot)}(\mathbb{R})\), then the operators \(a_lP+Q\) and \(a_rP+Q\) are invertible on standard Lebesgue spaces \(L_N^{q_l}(\mathbb{R})\) and \(L_N^{q_r}(\mathbb{R})\) with some exponents \(q_l\) and \(q_r\) lying in the segments between the lower and the upper limits of \(p\) at \(-\infty\) and \(+\infty\), respectively.

Karlovich, Alexei Yu, Yuri I. Karlovich, and Amarino B. Lebre. "Sufficient conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data." Integral Equations and Operator Theory. 70.4 (2011): 451-483. AbstractWebsite

Suppose \(\alpha\) is an orientation preserving diffeomorphism (shift) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\). We establish sufficient conditions for the Fredholmness of the singular integral operator with shift \[ (aI-bW_\alpha)P_++(cI-dW_\alpha)P_- \] acting on \(L^p(\mathbb{R}_+)\) with \( 1 < p < \infty \), where \(P_\pm=(I\pm S)/2\), \(S\) is the Cauchy singular integral operator, and \(W_\alpha f=f\circ\alpha\) is the shift operator, under the assumptions that the coefficients \(a,b,c,d\) and the derivative \(\alpha'\) of the shift are bounded and continuous on \(\mathbb{R}_+\) and may admit discontinuities of slowly oscillating type at \(0\) and \(\infty\).

Karlovich, Alexei Yu. "Singular integral operators on Nakano spaces with weights having finite sets of discontinuities." Function spaces IX. Proceedings of the 9th international conference, Kraków, Poland, July 6–11, 2009. Banach Center Publications, 92. Eds. Henryk Hudzik, Grzegorz Lewicki, Julian Musielak, Marian Nowak, and Leszek Skrzypczak. Warszawa: Polish Academy of Sciences, Institute of Mathematics, 2011. 143-166. Abstract

In 1968, Gohberg and Krupnik found a Fredholm criterion for singular integral operators of the form \(aP+bQ\), where \(a,b\) are piecewise continuous functions and \(P,Q\) are complementary projections associated to the Cauchy singular integral operator, acting on Lebesgue spaces over Lyapunov curves. We extend this result to the case of Nakano spaces (also known as variable Lebesgue spaces) with certain weights having finite sets of discontinuities on arbitrary Carleson curves.

2010
Karlovich, Alexei Yu. "Maximal operators on variable Lebesgue spaces with weights related to oscillations of Carleson curves." Mathematische Nachrichten. 283 (2010): 85-93. AbstractWebsite

We prove sufficient conditions for the boundedness of the maximal operator on variable Lebesgue spaces with weights \(\varphi_{t,\gamma}(\tau)=|(\tau-t)^\gamma|\), where \(\gamma\) is a complex number, over arbitrary Carleson curves. If the curve has different spirality indices at the point $t$ and \(\gamma\) is not real, then \(\varphi_{t,\gamma}\) is an oscillating weight lying beyond the class of radial oscillating weights considered recently by V. Kokilashvili, N. Samko, and S. Samko.

Karlovich, Alexei Yu, Helena Mascarenhas, and Pedro A. Santos. "Finite section method for a Banach algebra of convolution type operators on Lp(R) with symbols generated by PC and SO." Integral Equations and Operator Theory. 67.4 (2010): 559-600. AbstractWebsite

We prove necessary and sufficient conditions for the applicability of the finite section method to an arbitrary operator in the Banach algebra generated by the operators of multiplication by piecewise continuous functions and the convolution operators with symbols in the algebra generated by piecewise continuous and slowly oscillating Fourier multipliers on \(L^p(\mathbb{R})\), \(1 < p < \infty\).

Karlovich, Alexei Yu. "Singular integral operators on variable Lebesgue spaces over arbitrary Carleson curves." Topics in Operator Theory: Operators, Matrices and Analytic Functions, Vol. 1. Operator Theory: Advances and Applications, 202. Eds. JA Ball, V. Bolotnikov, JW Helton, L. Rodman, and IM Spitkovsky. Basel: Birkhäuser, 2010. 321-336. Abstract

In 1968, Israel Gohberg and Naum Krupnik discovered that local spectra of singular integral operators with piecewise continuous coefficients on Lebesgue spaces \(L^p(\Gamma)\) over Lyapunov curves have the shape of circular arcs. About 25 years later, Albrecht Böttcher and Yuri Karlovich realized that these circular arcs metamorphose to so-called logarithmic leaves with a median separating point when Lyapunov curves metamorphose to arbitrary Carleson curves. We show that this result remains valid in a more general setting of variable Lebesgue spaces \(L^{p(\cdot)}(\Gamma)\) where \(p:\Gamma\to(1,\infty)\) satisfies the Dini-Lipschitz condition. One of the main ingredients of the proof is a new condition for the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with weights related to oscillations of Carleson curves.

Karlovich, Alexei Yu. "Singular integral operators on variable Lebesgue spaces with radial oscillating weights." Operator Algebras, Operator Theory and Applications.Operator Theory Advances and Applications, 195 . Eds. JJ Grobler, LE Labuschagne, and M. Möller. Basel: Birkhäuser, 2010. 185-212. Abstract

We prove a Fredholm criterion for operators in the Banach algebra of singular integral operators with matrix piecewise continuous coefficients acting on a variable Lebesgue space with a radial oscillating weight over a logarithmic Carleson curve. The local spectra of these operators are massive and have a shape of spiralic horns depending on the value of the variable exponent, the spirality indices of the curve, and the Matuszewska-Orlicz indices of the weight at each point. These results extend (partially) the results of A. Böttcher, Yu. Karlovich, and V. Rabinovich for standard Lebesgue spaces to the case of variable Lebesgue spaces.

2009
Karlovich, Alexei Yu., and Ilya M. Spitkovsky. "Connectedness of spectra of Toeplitz operators on Hardy spaces with Muckenhoupt weights over Carleson curves." Integral Equations and Operator Theory. 65.1 (2009): 83-114. AbstractWebsite

Harold Widom proved in 1966 that the spectrum of a Toeplitz operator \(T(a)\) acting on the Hardy space \(H^p(\mathbb{T})\) over the unit circle \(\mathbb{T}\) is a connected subset of the complex plane for every bounded measurable symbol \(a\) and \(1 < p < \infty\). In 1972, Ronald Douglas established the connectedness of the essential spectrum of \(T(a)\) on \(H^2(\mathbb{T})\). We show that, as was suspected, these results remain valid in the setting of Hardy spaces \(H^p(\Gamma,w)\), \( 1 < p < \infty \), with general Muckenhoupt weights \(w\) over arbitrary Carleson curves \(\Gamma\).

Karlovich, Alexei Yu. "Asymptotics of Toeplitz matrices with symbols in some generalized Krein algebras." Modern Analysis and Applications: Mark Krein Centenary Conference, Vol. 1. Operator Theory Advances and Applications, 190. Eds. V. Adamyan, Y. Berezansky, I. Gohberg, M. Gorbachuk, V. Gorbachuk, A. Kochubei, H. Langer, and G. Popov. Basel: Birkhäuser, 2009. 341-359. Abstract

Let \(\alpha,\beta\in(0,1)\) and
\[
K^{\alpha,\beta}:=\left\{a\in L^\infty(\mathbb{T}):\
\sum_{k=1}^\infty |\widehat{a}(-k)|^2 k^{2\alpha}<\infty,\
\sum_{k=1}^\infty |\widehat{a}(k)|^2 k^{2\beta}<\infty
\right\}.
\]
Mark Krein proved in 1966 that \(K^{1/2,1/2}\) forms a Banach algebra. He also observed that this algebra is important in the asymptotic theory of finite Toeplitz matrices. Ten years later, Harold Widom extended
earlier results of Gabor Szegö for scalar symbols and established the asymptotic trace formula
\[
\operatorname{trace}f(T_n(a))=(n+1)G_f(a)+E_f(a)+o(1)
\quad\text{as}\ n\to\infty
\]
for finite Toeplitz matrices \(T_n(a)\) with matrix symbols \(a\in K^{1/2,1/2}_{N\times N}\). We show that if \(\alpha+\beta\ge 1\) and \(a\in K^{\alpha,\beta}_{N\times N}\), then the Szegö-Widom asymptotic trace formula holds with \(o(1)\) replaced by \(o(n^{1-\alpha-\beta})\).

Karlovich, Alexei Yu. "Remark on the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with radial oscillating weights." Journal of Function Spaces and Applications. 7 (2009): 301-311. AbstractWebsite

Recently V. Kokilashvili, N. Samko, and S. Samko have proved a sufficient condition for the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with radial oscillating weights over Carleson curves. This condition is formulated in terms of Matuszewska-Orlicz indices of weights. We prove a partial converse of their result.

2008
Karlovich, Alexei Yu. "Higher order asymptotic formulas for traces of Toeplitz matrices with symbols in Hölder-Zygmund spaces." Recent Advances in Matrix and Operator Theory. Operator Theory: Advances and Applications, 179. Eds. Joseph A. Ball, Yuli Eidelman, William J. Helton, Vadim Olshevsky, and James Rovnyak. Basel: Bikhäuser, 2008. 185-196. Abstract

We prove a higher order asymptotic formula for traces of finite block Toeplitz matrices with symbols belonging to Hölder-Zygmund spaces. The remainder in this formula goes to zero very rapidly for very smooth symbols. This formula refines previous asymptotic trace formulas by Szegő and Widom and complement higher order asymptotic formulas for determinants of finite block Toeplitz matrices due to Böttcher and Silbermann.

Karlovich, Alexei Yu. "Higher-order asymptotic formulas for Toeplitz matrices with symbols in generalized Hölder spaces." Operator Algebra, Operator Theory and Applications. Operator Theory Advances and Applications, 181. Eds. MA Bastos, I. Gohberg, AB Lebre, and FO Speck. Basel: Birkhäuser, 2008. 207-228. Abstract

We prove higher-order asymptotic formulas for determinants and traces of finite block Toeplitz matrices generated by matrix functions belonging to generalized Hölder spaces with characteristic functions from the Bari-Stechkin class. We follow the approach of Böttcher and Silbermann and generalize their results for symbols in standard Hölder spaces.

Karlovich, Alexei Yu., and L. Maligranda. "On the interpolation constant for subadditive operators in Orlicz spaces." Proceedings of the International Symposium on Banach and Function Spaces II (ISBFS 2006), Kyushu Institute of Technology, Kitakyushu, Japan, 14-17 September 2006. Eds. M. Kato, and L. Maligranda. Yokohama: Yokohama Publishers, 2008. 85-101.
2007
Karlovich, Alexei Yu. "Algebras of singular integral operators with piecewise continuous coefficients on weighted Nakano spaces." The Extended Field of Operator Theory. Operator Theory: Advances and Applications, 171. Ed. Michael A. Dritschel. Basel: Birkhäuser, 2007. 171-188. Abstract

We find Fredholm criteria and a formula for the index of an arbitrary operator in the Banach algebra of singular integral operators with piecewise continuous coefficients on Nakano spaces (generalized Lebesgue spaces with variable exponent) with Khvedelidze weights over either Lyapunov curves or Radon curves without cusps. These results ``localize'' the Gohberg-Krupnik Fredhohn theory with respect to the variable exponent.

Karlovich, Alexei Yu. "Asymptotics of block Toeplitz determinants generated by factorable matrix functions with equal partial indices." Mathematische Nachrichten. 280 (2007): 1118-1127. AbstractWebsite

We prove asymptotic formulas for block Toeplitz matrices with symbols admitting right and left Wiener-Hopf factorizations such that all partial indices are equal to some integer number. We consider symbols and Wiener-Hopf factorizations in Wiener algebras with weights satisfying natural submultiplicativity, monotonicity, and regularity conditions. Our results complement known formulas for Holder continuous symbols due to Bottcher and Silbermann.

Karlovich, Alexei Yu. "Asymptotics of determinants and traces of Toeplitz matrices with symbols in weighted Wiener algebras." Zeitschrift für Analysis und ihre Anwendungen. 26.1 (2007): 43-56. AbstractWebsite

We prove asymptotic formulas for determinants and traces of finite block Toeplitz matrices with symbols belonging to Wiener algebras with weights satisfying natural submultiplicativity, monotonicity, and regularity conditions. The remainders in these formulas depend on the weights and go rapidly to zero for very smooth symbols. These formulas refine or extend some previous results by Szegö, Widom, Bottcher, and Silbermann.

Karlovich, Alexei Yu. "Asymptotics of Toeplitz determinants generated by functions with Fourier coefficients in weighted Orlicz sequence classes." Function Spaces. Contemporary Mathematics, 435. Ed. K. Jarosz. Providence, RI: American Mathematical Society, 2007. 229-243. Abstract

We prove asymptotic formulas for Toeplitz determinants generated by functions with sequences of Fourier coefficients belonging to weighted Orlicz sequence classes. We concentrate our attention on the case of nonvanishing generating functions with nonzero Cauchy index.

Böttcher, Albrecht, Alexei Yu. Karlovich, and Bernd Silbermann. "Generalized Krein algebras and asymptotics of Toeplitz determinants." Methods of Functional Analysis and Topology. 13.2 (2007): 236-261. AbstractWebsite

We give a survey on generalized Krein algebras \(K_{p,q}^{\alpha,\beta}\) and their applications to Toeplitz determinants. Our methods originated in a paper by Mark Krein of 1966, where he showed that \(K_{2,2}^{1/2,1/2}\) is a Banach algebra. Subsequently, Widom proved the strong Szeg\H{o} limit theorem for block Toeplitz determinants with symbols in \((K_{2,2}^{1/2,1/2})_{N\times N}\) and later two of the authors studied symbols in the generalized Krein algebras \((K_{p,q}^{\alpha,\beta})_{N\times N}\), where \(\lambda:=1/p+1/q=\alpha+\beta\) and \(\lambda=1\). We here extend these results to \(0<\lambda<1\). The entire paper is based on fundamental work by Mark Krein, ranging from operator ideals through Toeplitz operators up to Wiener-Hopf factorization.

Karlovich, Alexei Yu. "Semi-Fredholm singular integral operators with piecewise continuous coefficients on weighted variable Lebesgue spaces are Fredholm." Operators and Matrices. 1.3 (2007): 427-444. AbstractWebsite

Suppose \(\Gamma\) is a Carleson Jordan curve with logarithmic whirl points, \(\varrho\) is a Khvedelidze weight, \(p:\Gamma\to(1,\infty)\) is a continuous function satisfying \(|p(\tau)-p(t)|\le -\mathrm{const}/\log|\tau-t|\) for \(|\tau-t|\le 1/2\), and \(L^{p(\cdot)}(\Gamma,\varrho)\) is a weighted generalized Lebesgue space with variable exponent. We prove that all semi-Fredholm operators in the algebra of singular integral operators with \(N\times N\) matrix piecewise continuous coefficients are Fredholm on \(L_N^{p(\cdot)}(\Gamma,\varrho)\).

2006
Karlovich, AY. "Higher order asymptotics of Toeplitz determinants with symbols in weighted Wiener algebras." Journal of Mathematical Analysis and Applications. 320.2 (2006): 944-963. AbstractWebsite

We extend a result of Bottcher and Silbermann on higher order asymptotics of determinants of block Toeplitz matrices with symbols in Wiener algebras with power weights to the case of Wiener algebras with general weights satisfying natural submultiplicativity, monotonicity, and regularity conditions.

2005
Karlovich, Alexei Yu. "Algebras of singular integral operators on Nakano spaces with Khvedelidze weights over Carleson curves with logarithmic whirl points." Izvestiya Vysshih Uchebnyh Zavedeniy. Severo-Kavkazskiy Region. Estestvennye Nauki. Special Issue "Pseudodifferential equations and some problems of mathematical physics". Rostov-on-Don: Rostov University Press, 2005. 135-142. Abstract22_2005_simonenko-70.pdf

We establish a Fredholm criterion for an arbitrary operator in the Banach algebra of singular integral operators
with piecewise continuous coefficients on Nakano spaces (generalized Lebesgue spaces with variable exponent) with Khvedelidze weights over Carleson curves with logarithmic whirl points.

Karlovich, Alexei Yu., and Andrei K. Lerner. "Commutators of singular integrals on generalized Lp spaces with variable exponent." Publicacions Matematiques. 49.1 (2005): 111-125. AbstractWebsite

A classical theorem of Coifman, Rochberg, and Weiss on commutators of singular integrals is extended to the case of generalized Lp spaces with variable exponent.

Karlovich, Alexei Yu., and Pedro A. Santos. "On asymptoties of Toeplitz determinants with symbols of nonstandard smoothness." Journal of Fourier Aanalysis and Applications. 11.1 (2005): 43-72. AbstractWebsite

We prove Szegö's strong limit theorem for Toeplitz determinants with a symbol having a nonstandard smoothness. We assume that the symbol belongs to the Wiener algebra and, moreover, the sequences of Fourier coefficients of the symbol with negative and nonnegative indices belong to weighted Orlicz classes generated by complementary \(N\)-functions both satisfying the \(\Delta_2^0\)-condition and by weight sequences satisfying some regularity, and compatibility conditions.