de Oliveira, I. R., I. dos Santos Gonçalves, K. Wallace dos Santos, M. C. Lança, T. Vieira, J. C. Silva, I. F. Cengiz, R. L. Reis, J. M. Oliveira, and J. P. Miranda Ribeiro Borges,
"Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillers",
ACS Materials Au, vol. 3, no. 6: American Chemical Society, pp. 646–658, 2023.
AbstractTraditional bioactive glass powders are typically composed of irregular particles that can be packed into dense configurations presenting low interconnectivity, which can limit bone ingrowth. The use of novel biocomposite sphere formulations comprising bioactive factors as bone fillers are most advantageous, as it simultaneously allows for packing the particles in a 3-dimensional manner to achieve an adequate interconnected porosity, enhanced biological performance, and ultimately a superior new bone formation. In this work, we develop and characterize novel biocomposite macrospheres of Sr-bioactive glass using sodium alginate, polylactic acid (PLA), and chitosan (CH) as encapsulating materials for finding applications as bone fillers. The biocomposite macrospheres that were obtained using PLA have a larger size distribution and higher porosity and an interconnectivity of 99.7%. Loose apatite particles were observed on the surface of macrospheres prepared with alginate and CH by means of soaking into a simulated body fluid (SBF) for 7 days. A dense apatite layer was formed on the biocomposite macrospheres' surface produced with PLA, which served to protect PLA from degradation. In vitro investigations demonstrated that biocomposite macrospheres had minimal cytotoxic effects on a human osteosarcoma cell line (SaOS-2 cells). However, the accelerated degradation of PLA due to the degradation of bioactive glass may account for the observed decrease in SaOS-2 cells viability. Among the biocomposite macrospheres, those composed of PLA exhibited the most promising characteristics for their potential use as fillers in bone tissue repair applications.
MC, L., W. W, N. ER, G. R, and M. - M. S. J,
"Influence of humidity on the electrical charging properties of cork agglomerates",
Journal of Non-Crystalline Solids, vol. 353, pp. 4501-4505, Jan, 2007.
Abstractn/a
MC, L., W. W, N. ER, G. R, and M. - M. S. J,
"Influence of humidity on the electrical charging properties of cork agglomerates",
Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007.
AbstractCork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)).
Judeinstein, P., M. C. Lanca, J. Marat-Mendes, and J. Rault,
"Pore dimension of water trees in PE: NMR studies",
Polymer, vol. 41, no. 22, pp. 8151-8154, 2000.
AbstractIn PE films aged under electric field the crystallisation of water (and melting of ice) has been studied by quadrupolar NMR, this technique allows one to determine the concentration of water as low as 10(-4). It is shown that the pore dimensions of the tracks forming the water trees of the order of 2.5 nm, are independent of the ageing time. The mobility of water in these water trees and in porous glass, of similar pore dimensions, are compared. (C) 2000 Elsevier Science Ltd. All rights reserved.
Judeinstein, P., M. C. Lanca, J. Marat-Mendes, and J. Rault,
"Pore dimension of water trees in PE: NMR studies",
Polymer, vol. 41, no. 22, pp. 8151-8154, 2000.
AbstractIn PE films aged under electric field the crystallisation of water (and melting of ice) has been studied by quadrupolar NMR, this technique allows one to determine the concentration of water as low as 10(-4). It is shown that the pore dimensions of the tracks forming the water trees of the order of 2.5 nm, are independent of the ageing time. The mobility of water in these water trees and in porous glass, of similar pore dimensions, are compared. (C) 2000 Elsevier Science Ltd. All rights reserved.
MC, L., N. ER, N. RM, D. CJ, M. - M. JN, and D. - G. DK,
"Space charge studies in LDPE using combined isothermal and non-isothermal current measurements",
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 11: Univ Wales, Univ Nova Lisboa, pp. 25-34, Jan, 2004.
Abstractn/a
ER, N., D. CJ, L. MC, I. R, I. P, and M. - M. J. N.,
The use of the final thermally stimulated discharge current technique to study the molecular movements around glass transition,
, vol. 354, pp. 385-390, Jan, 2011.
Abstractn/a
ER, N., D. CJ, L. MC, I. R, I. P, and M. - M. J. N.,
The use of the final thermally stimulated discharge current technique to study the molecular movements around glass transition,
, vol. 354, issue 2, 2011.
AbstractDuring electric polarization charge is injected into the material. The structure is decorated with space charge and during the subsequent heating an apparent peak and the genuine peaks that are related to dipole randomization and charge detrapping are observed. The method is used here to analyze the molecular movements in polyimide in the temperature range from 293 to 623K. Two weak relaxations have been observed around 337K and around 402K. The electrical conductivity changes with temperature in agreement with the Arrhenius law only below (W=(0.84±0.03) eV ) and above ( W=(0.82±0.03) eV) the temperature range where the β relaxation is observed. The variation of the electrical conductivity with temperature, in the range of the β relaxation, is controlled by the variation of the charge currier mobility with temperature and it shows a non-Arrhenius behavior. We suggest that the β1 sub-glass relaxation is related to the rotation or oscillation of phenyl groups and the β2 sub-glass relaxation is related to the rotation or oscillation of the imidic ring. At higher temperatures an apparent peak was observed. The relaxation time of the trapped charge, at 573K, is high than 8895s.
Gavinho, S. R., P. R. Prezas, D. J. Ramos, I. Sá‐Nogueira, J. P. Borges, C. M. Lança, J. C. Silva, C. M. R. Henriques, E. Pires, J. S. Kumar, and M. P. F. Graça,
"{Nontoxic glasses: Preparation, structural, electrical and biological properties}",
International Journal of Applied Ceramic Technology: John Wiley {&} Sons, Ltd (10.1111), pp. ijac.13243, apr, 2019.
Abstractn/a