Publications

Export 35 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
R
Lai, Livia, Janene Bumstead, Yan Liu, James Garnett, Maria A. Campanero-Rhodes, Damer P. Blake, Angelina S. Palma, Wengang Chai, David J. P. Ferguson, Peter Simpson, Ten Feizi, Fiona M. Tomley, and Stephen Matthews. "The Role of Sialyl Glycan Recognition in Host Tissue Tropism of the Avian Parasite Eimeria tenella." Plos Pathogens. 7 (2011). Abstract
n/a
S
Murugesan, Gavuthami, Viviana G. Correia, Angelina S. Palma, Wengang Chai, Chunxia Li, Ten Feizi, Eva Martin, Brigitte Laux, Alexandra Franz, Klaus Fuchs, Bernd Weigle, and Paul R. Crocker. "Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression." Glycobiology (2020). Abstract

Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors that plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-$\beta$. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally-defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-$\beta$ secretion following co-culture of Siglec-15-expressing monocytic cells lines with tumor cells expressing sTn, or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.

Palma, Angelina S., Benedita Pinheiro, Yan Liu, Yoichi Takeda, Wengang Chai, Yukishige Ito, Maria Joao Romao, Ana Luisa Carvalho, and Ten Feizi. "The Structural Basis of the Recognition of Di-glucosylated N-glycans by the ER Lectin Malectin." Glycobiology. 23 (2013): 1368-1369. Abstract
n/a
Watson, A. A., A. A. Lebedev, B. A. Hall, A. E. Fenton-May, A. A. Vagin, W. Dejnirattisai, J. Felce, J. Mongkolsapaya, A. S. Palma, Y. Liu, T. Feizi, G. R. Screaton, G. N. Murshudov, and C. A. O'Callaghan. "Structural flexibility and ligand-binding characteristics of the macrophage dengue virus receptor CLEC5A." Immunology. 135 (2011): 101. Abstract
n/a
Watson, Aleksandra A., Andrey A. Lebedev, Benjamin A. Hall, Angharad E. Fenton-May, Alexei A. Vagin, Wanwisa Dejnirattisai, James Felce, Juthathip Mongkolsapaya, Angelina S. Palma, Yan Liu, Ten Feizi, Gavin R. Screaton, Garib N. Murshudov, and Christopher A. O'Callaghan. "Structural Flexibility of the Macrophage Dengue Virus Receptor CLEC5A IMPLICATIONS FOR LIGAND BINDING AND SIGNALING." Journal of Biological Chemistry. 286 (2011): 24208-24218. Abstract
n/a
Neu, Ursula, Stacy-Ann A. Allen, Barbel S. Blaum, Yan Liu, Martin Frank, Angelina S. Palma, Luisa J. Stroh, Ten Feizi, Thomas Peters, Walter J. Atwood, and Thilo Stehle. "A Structure-Guided Mutation in the Major Capsid Protein Retargets BK Polyomavirus." PLoS pathogens. 9 (2013): e1003688. Abstract
n/a
Neu, Ursula, Zaigham Mahmood Khan, Benjamin Schuch, Angelina S. Palma, Yan Liu, Michael Pawlita, Ten Feizi, and Thilo Stehle. "Structures of B-Lymphotropic Polyomavirus VP1 in Complex with Oligosaccharide Ligands." PLoS pathogens. 9 (2013): e1003714. Abstract
n/a
U
Palma, Angelina S., Yan Liu, Hongtao Zhang, Yibing Zhang, Barry V. McCleary, Guangli Yu, Qilin Huang, Leticia S. Guidolin, Andres E. Ciocchini, Antonella Torosantucci, Denong Wang, Ana Luisa Carvalho, Carlos M. G. A. Fontes, Barbara Mulloy, Robert A. Childs, Ten Feizi, and Wengang Chai. "Unravelling Glucan Recognition Systems by Glycome Microarrays Using the Designer Approach and Mass Spectrometry." Molecular & Cellular Proteomics. 14 (2015): 974-988. Abstract
n/a
{
Gao, Tian, Jingyu Yan, Chang-Cheng Liu, Angelina S. Palma, Zhimou Guo, Min Xiao, Xi Chen, Xinmiao Liang, Wengang Chai, and Hongzhi Cao. "{Chemoenzymatic Synthesis of O-Mannose Glycans Containing Sulfated or Nonsulfated HNK-1 Epitope.}." Journal of the American Chemical Society. 141 (2019): 19351-19359. Abstract

The human natural killer-1 (HNK-1) epitope is a unique sulfated trisaccharide sequence presented on O- and N-glycans of various glycoproteins and on glycolipids. It is overexpressed in the nervous system and plays crucial roles in nerve regeneration, synaptic plasticity, and neuronal diseases. However, the investigation of functional roles of HNK-1 in a more complex glycan context at the molecular level remains a big challenge due to lack of access to related structurally well-defined complex glycans. Herein, we describe a highly efficient chemoenzymatic approach for the first collective synthesis of HNK-1-bearing O-mannose glycans with different branching patterns, and for their nonsulfated counterparts. The successful strategy relies on both chemical glycosylation of a trisaccharide lactone donor for the introduction of sulfated HNK-1 branch and substrate promiscuities of bacterial glycosyltransferases that can tolerate sulfated substrates for enzymatic diversification. Glycan microarray analysis with the resulting complex synthetic glycans demonstrated their recognition by two HNK-1-specific antibodies including anti-HNK-1/N-CAM (CD57) and Cat-315, which provided further evidence for the recognition epitopes of these antibodies and the essential roles of the sulfate group for HNK-1 glycan-antibody recognition.

Vendele, Ingrida, Janet A. Willment, Lisete M. Silva, Angelina S. Palma, Wengang Chai, Yan Liu, Ten Feizi, Maria Spyrou, Mark H. T. Stappers, Gordon D. Brown, and Neil A. R. Gow. "{Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls.}." PLoS pathogens. 16 (2020): e1007927. Abstract

During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4-7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the $\beta$-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface.