Recent Publications

Export 37 results:
Sort by: Author Title Type [ Year  (Asc)]
1997
Moser, I., F. Mota-Furtado, P. F. O'Mahony, and J. P. Santos. "Rydberg wave packets in parallel electric and magnetic fields." Physical Review A 55 (1997): 3724-3729. Abstract

The magnitude of the time autocorrelation function M between states excited by two Gaussian laser pulses is calculated for both hydrogen and rubidium atoms inparallel electric and magnetic fields. M is determined by a full quantum-mechanical calculation but the peaks are identified with the periods of the shortest periodicorbits of the corresponding classical system. Qualitative agreement is obtained with experimental results, however, discrepancies are found in the relative heights ofthe peaks.

1999
Santos, J. P., J. P. Marques, F. Parente, E. Lindroth, P. Indelicato, and J. P. Desclaux. "Relativistic 2s1/2 (L1) atomic subshell decay rates and fluorescence yields for Yb and Hg." Journal of Physics B: Atomic and Molecular Physics 32 (1999): 2089. AbstractWebsite
n/a
Santos, J. P., F. Mota-Furtado, M. F. Laranjeira, and F. Parente. "Rydberg states of atoms in parallel electric and magnetic fields." Physical Review A 59 (1999): 1703-1706. AbstractWebsite

We present theoretical results for the photoabsorption spectrum of an atom in parallel electric and magnetic fields, using the R-matrix method combined with quantum-defect theory. We introduce a radial basis set which is complete and orthonormal over a semi-infinite interval [r0,(infinity)), to allow calculations to be performed for high Rydberg states in nonhydrogenic atoms without encountering problems due to linear dependence of the basis set. The nonhydrogenic character of the spectra is analyzed for Li and Rb, and a comparison is made with previous high-precision experiments which shows that the theoretical results agree very well with experiment.

2000
Santos, J. P., J. P. Marques, F. Parente, P. Indelicato, and J. P. Desclaux. "Relativistic 2s1/2 (L1) atomic subshell radiationless transition probabilities for Yb and Hg." Atomic Data and Nuclear Data Tables 76 (2000): 49-69. Abstract

Radiationless transition rates to L1 vacancy states have been calculated ab initio in the Dirac-Fock approximation. The calculations include quantum-electrodynamic corrections. Results in the jj coupling scheme for all possible L1 transitions are tabulated for elements Yb and Hg.

2001
Indelicato, P., G. C. Rodrigues, E. Lindroth, M. A. Ourdane, F. Parente, J. P. Santos, P. Patté, and J. Bieron. "Relativistic and many-body effects on total binding energies of Cesium and other highly-charged ion." Physica Scripta T92 (2001): 327. Abstract

The determination of atomic masses from highly ionized atoms using Penning Traps requires precise values for electronic binding energies. In the present work, binding energies of several ions (from several elements) are calculated in the framework of two relativistic many-body methods: Relativistic Many-Body Perturbation Theory (RMBPT) and Multi-Configuration Dirac– Fock (MCDF). The ions studied in this work are: Cl (He and Li-like), Se (F and Ne-like), Cs (He, Be, Ne, Al, Cl, Ar, K, Kr, Xe-like and neutral Cs), Hg, Pb and U (Br and Kr-like). Some of them are presented in this paper. Cesium has been treated in more details, allowing for a systematic comparison between MCDF and RMBPT methods. The Cs ions binding energies allow for the determination of atomic Cs mass, which can be used in a QED-independent fine structure constant determination.

Indelicato, P., E. Lindroth, T. Beier, J. Bieron, A. M. Costa, I. Lindgren, J. P. Marques, A. M. Martenson-Pendrill, M. C. Martins, M. A. Ourdane, F. Parente, P. Patté, G. C. Rodrigues, S. Salomonson, and J. P. Santos. "Relativistic Calculations for Trapped Ions." Hyperfine Interactions 132 (2001): 347-361. AbstractWebsite

We present recent results in the field of total binding energy calculations, Landщ factors, quantum electrodynamics corrections and lifetime that are of interest for ion traps and ion sources. We describe in detail MCDF and RMBPT calculation of ionic binding energies, which are needed for the determination of atomic masses from highly charged ion measurements. We also show new results concerning Landщ factor in 3-electron ions. Finally we describe how relativistic calculations can help understand the physics of heavy ion production ion sources.

2004
Martins, M. C., A. M. Costa, J. P. Santos, F. Parente, and P. Indelicato. "Relativistic calculation of two-electron one-photon and hypersatellite transition energies for 12<=Z<=30 elements." Journal of Physics B: Atomic and Molecular Physics 37 (2004): 3785-3795. AbstractWebsite

Energies of two-electron one-photon transitions from initial double K-hole states were computed using the Dirac–Fock model. The transition energies of competing processes, the Ka hypersatellites, were also computed. The results are compared with experiment and to other theoretical calculations.

2005
"Relativistic transition probabilities for F-like ions with 10." Nuclear Instruments and Methods in Physics Research Section B 235 (2005): 171. AbstractWebsite
In the present work we have calculated several relativistic transition probabilities for the F-like ions with 10 less-than-or-equals, slant Z less-than-or-equals, slant 49, in the framework of the Multi-Configuration Dirac–Fock method, for applications on laserphysics and astrophysics. The lines considered correspond to transitions between levels of 2p43s, 2p43p and 2p43d configurations. The spectral fine structure is taken into consideration and the results for individual lines are given.
Santos, J. P., C. Madruga, F. Parente, and P. Indelicato. "Relativistic transition probabilities for F-like ions with 10⩽Z⩽49." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 235 (2005): 171-173. AbstractWebsite

In the present work we have calculated several relativistic transition probabilities for the F-like ions with 10 less-than-or-equals, slant Z less-than-or-equals, slant 49, in the framework of the Multi-Configuration Dirac–Fock method, for applications on laserphysics and astrophysics. The lines considered correspond to transitions between levels of 2p43s, 2p43p and 2p43d configurations. The spectral fine structure is taken into consideration and the results for individual lines are given.

2006
Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kβ hypersatellite energies and transition probabilities for selected atoms with 13 ≤ Z ≤ 80." Journal of Physics B: Atomic and Molecular Physics 39 (2006): 2355-2366. AbstractWebsite

Energies and transition probabilities of Kβ hypersatellite lines are computed using the Dirac–Fock model for several values of Z throughout the periodic table. The influence of the Breit interaction on the energy shifts from the corresponding diagram lines and on the Kβh1/Kβh3 intensity ratio is evaluated. The widths of the double-K hole levels are calculated for Al and Sc. The results are compared to experiment and to other theoretical calculations.Al_Sc_Mg_Ti

Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kβ hypersatellite energies and transition probabilities for selected atoms with 13<=Z<=80." Journal of Physics B: Atomic and Molecular Physics 39 (2006): 2355-2366. AbstractWebsite
Energies and transition probabilities of Kβ hypersatellite lines are computed using the Dirac–Fock model for several values of Z throughout the periodic table. The influence of the Breit interaction on the energy shifts from the corresponding diagram lines and on the Kβh1/Kβh3 intensity ratio is evaluated. The widths of the double-K hole levels are calculated for Al and Sc. The results are compared to experiment and to other theoretical calculations.
Santos, J. P., G. C. Rodrigues, J. P. Marques, F. Parente, J. P. Desclaux, and P. Indelicato. "Relativistic correlation correction to the binding energies of the ground configuration of beryllium-like, neon-like, magnesium-like and argon-like ions." The European Physical Journal D 37 (2006): 201-207. AbstractWebsite
Total electronic correlation corrections to the binding energies of the isoelectronic series of beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.
Santos, J. P., G. C. Rodrigues, J. P. Marques, F. Parente, J. P. Desclaux, and P. Indelicato. "Relativistic correlation correction to the binding energies of the ground configuration of beryllium-like, neon-like, magnesium-like and argon-like ions." The European Physical Journal D 37 (2006): 201-207. AbstractWebsite

Total electronic correlation corrections to the binding energies of the isoelectronic series of beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.

2007
Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kα hypersatellite line energies and transition probabilities for selected atoms with 12<=Z<=80." Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 57. AbstractWebsite
The transition probabilities of Kα hypersatellite lines and energy shifts with respect to the corresponding diagram lines are computed using the Dirac–Fock model for several values of atomic number Z throughout the periodic table. The influence of the Breit interaction on the Kα1h/Kα2h line intensity ratio, Kα1h and Kα2h line energy shifts and Kα1h to Kα2h line energy splitting is evaluated. Double-K shell hole threshold values for selected elements with 23 ⩽Z⩽ 30, calculated within the same approach, are compared with available experimental results.
Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of K&alpha; hypersatellite line energies and transition probabilities for selected atoms with 12 ≤ Z ≤ 80." Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 57. AbstractWebsite

The transition probabilities of K&alpha; hypersatellite lines and energy shifts with respect to the corresponding diagram lines are computed using the Dirac&ndash;Fock model for several values of atomic number <I>Z</I> throughout the periodic table. The influence of the Breit interaction on the K&alpha;<SUB>1</SUB><SUP>h</SUP>/K&alpha;<SUB>2</SUB><SUP>h</SUP> line intensity ratio, K&alpha;<SUB>1</SUB><SUP>h</SUP> and K&alpha;<SUB>2</SUB><SUP>h</SUP> line energy shifts and K&alpha;<SUB>1</SUB><SUP>h</SUP> to K&alpha;<SUB>2</SUB><SUP>h</SUP> line energy splitting is evaluated. Double-K shell hole threshold values for selected elements with 23 &les;<I>Z</I>&les; 30, calculated within the same approach, are compared with available experimental results.

2009
Amaro, P., J. P. Santos, F. Parente, A. Surzhykov, and P. Indelicato. "Resonance effects on the two-photon emission from hydrogenic ions." Physical Review A (Atomic, Molecular, and Optical Physics) 79 (2009): 062504. AbstractWebsite
A theoretical study of the all two-photon transitions from initial bound states with ni=2,3 in hydrogenic ions is presented. High-precision values of relativistic decay rates for ions with nuclear charge in the range 1<=Z<=92 are obtained through the use of finite basis sets for the Dirac equation constructed from B splines. We also report the spectral (energy) distributions of several resonant transitions, which exhibit interesting structures, such as zeros in the emission spectrum, indicating that two-photon emission is strongly suppressed at certain frequencies. We compare two different approaches (the line profile approach and the QED approach based on the analysis of the relativistic two-loop self-energy) to regularize the resonant contribution to the decay rate. Predictions for the pure two-photon contributions obtained in these approaches are found to be in good numerical agreement.
Amaro, P., J. P. Santos, F. Parente, A. Surzhykov, and P. Indelicato. "Resonance effects on the two-photon emission from hydrogenic ions." Physical Review A 79 (2009): 062504. AbstractWebsite

A theoretical study of the all two-photon transitions from initial bound states with ni=2,3 in hydrogenic ions is presented. High-precision values of relativistic decay rates for ions with nuclear charge in the range 1<=Z<=92 are obtained through the use of finite basis sets for the Dirac equation constructed from B splines. We also report the spectral (energy) distributions of several resonant transitions, which exhibit interesting structures, such as zeros in the emission spectrum, indicating that two-photon emission is strongly suppressed at certain frequencies. We compare two different approaches (the line profile approach and the QED approach based on the analysis of the relativistic two-loop self-energy) to regularize the resonant contribution to the decay rate. Predictions for the pure two-photon contributions obtained in these approaches are found to be in good numerical agreement.

2011
Santos, J., A. Costa, C. Madruga, F. Parente, and P. Indelicato. "Relativistic transition wavelenghts and probabilities for spectral lines of Ne II." The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 63 (2011): 89-96. AbstractWebsite

Transition wavelengths and probabilities for several 2 p 4 3 p -2 p 4 3 s and 2 p 4 3 d -2 p 4 3 p lines in fluorine-like neon ion (NeII) have been calculated within the multiconfiguration Dirac-Fock (MCDF) method with quantum electrodynamics (QED) corrections. The results are compared with all existing experimental and theoretical data.

Santos, J. P., A. Costa, C. Madruga, F. Parente, and P. Indelicato. "Relativistic transition wavelenghts and probabilities for spectral lines of Ne II." The European Physical Journal D 63 (2011): 89-96. AbstractWebsite

Transition wavelengths and probabilities for several 2 p 4 3 p -2 p 4 3 s and 2 p 4 3 d -2 p 4 3 p lines in fluorine-like neon ion (NeII) have been calculated within the multiconfiguration Dirac-Fock (MCDF) method with quantum electrodynamics (QED) corrections. The results are compared with all existing experimental and theoretical data.

2012
Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, and F. Fratini. "Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen." Physical Review A 85 (2012): 043406. AbstractWebsite

We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic states used for the calculations are obtained by making use of the finite basis-set method and expressed in terms of B splines and B polynomials. We pay particular attention to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons, while symmetric with respect to the scattering angle θ=90∘ within the electric dipole approximation, becomes asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy range 0.5 to 10 keV. When possible, results are compared with previous calculations.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, and F. Fratini. "Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen." Phys. Rev. A 85 (2012): 043406. AbstractWebsite

We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic states used for the calculations are obtained by making use of the finite basis-set method and expressed in terms of B splines and B polynomials. We pay particular attention to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons, while symmetric with respect to the scattering angle θ=90∘ within the electric dipole approximation, becomes asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy range 0.5 to 10 keV. When possible, results are compared with previous calculations.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, S. Tashenov, and F. Fratini. "Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen." Phys. Rev. A 86 (2012): 043405. AbstractWebsite

A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is performed, based on the Dirac equation and second-order perturbation theory. The relativistic atomic states used for the calculations are obtained by making use of the finite basis set method and are expressed in terms of B splines and B polynomials. We introduce two experimental scenarios in which the light is circularly and linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to 5 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, S. Tashenov, and F. Fratini. "Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen." Physical Review A 86 (2012): 043405. AbstractWebsite

A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is performed, based on the Dirac equation and second-order perturbation theory. The relativistic atomic states used for the calculations are obtained by making use of the finite basis set method and are expressed in terms of B splines and B polynomials. We introduce two experimental scenarios in which the light is circularly and linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to 5 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction.

2013
Szabo, Csilla I., Pedro Amaro, Mauro Guerra, Sophie Schlesser, Alexander Gumberidze, Jose Paulo Santos, and Paul Indelicato. "Reference free, high-precision measurements of transition energies in few electron argon ions." AIP APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY: Twenty-Second International Conference 1525 (2013): 68-72. AbstractWebsite

The use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 - 1s2 1 S0 diagram line and the 1s2s 3 S1 - 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 P j 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 - 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.

Szabo, Csilla I., Pedro Amaro, Mauro Guerra, Sophie Schlesser, Alexander Gumberidze, Jose Paulo Santos, and Paul Indelicato. "Reference free, high-precision measurements of transition energies in few electron argon ions." AIP Conf. Proc. 1525 (2013): 68-72. AbstractWebsite

The use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 - 1s2 1 S0 diagram line and the 1s2s 3 S1 - 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 P j 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 - 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.