Publications

Export 25 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Silva, Pedro, José Nuno Varandas, and Corneliu Cismasiu. "AVALIAÇÃO DA VULNERABILIDADE SÍSMICA DE UM PASSADIÇO PEDONAL PARTINDO DA SUA IDENTIFICAÇÃO MODAL DINÂMICA." TEST&E 2022 3rd Conference on Testing and Experimentation in Civil Engineering Smart Technologies. Campus da Caparica, Portugal 2022. 046.pdf
2021
Cismaşiu, Corneliu, Pedro B. S. Silva, José V. Lemos, and Ildi Cismaşiu. "Seismic Vulnerability Assessment of a Stone Arch Using Discrete Elements." International Journal of Architectural Heritage (2021): 1-15. AbstractWebsite
n/a
2020
Santos, F. A., H. Rebelo, M. Coutinho, L. S. Sutherland, C. Cismasiu, I. Farina, and F. Fraternali. "Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg." Composite Structures (2020): 113128. AbstractWebsite

This work studies the low-velocity impact response of 3D-printed layered structures made of thermoplastic materials (PLA and PETg), which form sacrificial claddings for impact protection. The analyzed structures are composed of crushable cellular cores placed in between terminal stiffening plates. The cores tessellate either honeycomb hexagonal unit cells, or hexagonal cells with re-entrant corners, with the latter exhibiting auxetic response. The given results highlight that the examined PETg protectors exhibit higher energy dissipation ratios and lower restitution coefficients, as compared to PLA structures that have the same geometry. It is concluded that PETg qualifies as an useful material for the fabrication of effective impact protection gear through ordinary, low-cost 3D printers.

2019
da Silva, Pedro Boto Semblano, Corneliu Cismasiu, and José Vieira de Lemos. "Avaliação da vulnerabilidade sísmica de um arco em alvenaria utilizando o método dos elementos discretos." SÍSMICA 2019 - 11º Congresso Nacional de Sismologia e Enhenharia Sísmica. Lisboa 2019. final_sismica2019.pdf
Rebelo, Hugo Bento, Filipe Amarante dos Santos, Corneliu Cismasiu, and Duarte Santos. "Exploratory study on geodesic domes under blast loads." International Journal of Protective Structures (2019).
2018
Santos, Filipe, Corneliu Cismasiu, Ildi Cismasiu, and Chiara Bedon. "Dynamic Characterisation and Finite Element Updating of a RC Stadium Grandstand." Buildings. 8.10 (2018): 141, 1-19.
Cismaşiu, Corneliu, Filipe Amarante Dos P. Santos, Rui Da Silva A. Perdigão, Vasco M. S. Bernardo, Paulo X. Candeias, Alexandra R. Carvalho, and Luís M. C. Guerreiro. "Seismic Vulnerability Assessment of a RC Pedestrian Crossing." JOURNAL OF EARTHQUAKE ENGINEERING. X.X (2018): 1-19.
2017
Joaquim, Ana, Corneliu Cismasiu, Filipe Santos, and Elsa Caetano. "Estimation of the tensile force in the stay-cables of Salgueiro Maia Bridge using ambient vibration tests." ISDAC2017 - International Symposium on the Dynamics and Aerodynamics of Cables. Porto: FEUP, 2017. artigo_isdac_v5_ec.pdf
2016
Santos, F., C. Cismasiu, R. Perdigão, V. Bernardo, J. Sampayo, P. Candeias, A. Costa, A. Carvalho, and L. Guerreiro COMPORTAMENTO SÍSMICO DE LIGAÇÕES EM PASSADIÇOS PRÉ-FABRICADOS. 10º Congresso Nacional de Sismologia e Engenharia Sísmica. Ponta Delgada, 2016.artigosismica2016_submetido.docx
2015
Bedon, Chiara, Filipe Santos, Claudio Amadio, and Corneliu Cismasiu. "Passive and active control systems for adaptive glazing systems and envelopes." European COST Action TU1403 "Adaptive facades network" Industry Workshop. Delft, The Netherlands 2015.
2014
Cismasiu, Corneliu, Filipe Amarante P. dos Santos, and Ana I. M. Rodrigues. "Experimental and FE updating techniques for the unseating vulnerability assessment of a footbridge structure." The 4th International Conference on Dynamics, Vibration and Control. Shanghai, China: Shanghai Institute of Applied Mathematics and Mechanics, 2014. icdvc_2014.pdf
dos Santos, Filipe Amarante P., Corneliu Cismasiu, Pedro F. Gonçalves, and Mauricio Gamboa-Marrufo. "Smart glass facade subjected to wind loadings." Structures and Buildings. 167.12 (2014): 1-10.
2013
Cismasiu, Corneliu, and Filipe Pimentel Amarante dos Santos. "Shape Memory Alloys in Structural Vibration Control. Research at UNIC/DEC/FCT/UNL." International Conference "Tradition and Innovation". 60 Years of Civil Engineering Higher Education in Transilvania. Cluj-Napoca, Romania: UTCN, 2013. c60.pdf
dos Santos, Amarante F. P., and C. Cismasiu. "Bridge Hinge-Restrainers Built up of NITI Superelastic Shape-Memory Alloys." New Trends in Smart Technologies . Eds. Christian Boller, and Hartmut Janocha. Saarbrücken: Fraunhofer Verlag, 2013. 195-203.
2012
Cismasiu, C., and Amarante F. P. dos Santos. "Towards a semi-active vibration control solution based on superelastic shape memory alloys." 15th WCEE. Lisbon, Portugal 2012. 2012_wcee_0379.pdf
2011
dos Santos, Amarante F. P., and C. Cismasiu. "Bridge hinge-restrainers built up of NiTi superelastic shape-memory alloys." Smart Structures and Materials (SMART'11). 5th ECCOMAS Thematic Conference on Smart Structures and Materials SMART'11. Saarbrücken, Germany 2011. Abstractsantos_2011.pdf

n/a

2010
Cismasiu, Corneliu, and Filipe Amarante Dos P. Santos. "Shape Memory Alloys." Ed. Book Corneliu edited by: Cismasiu. ISBN: 978-953-307-106-0. Croatia: Scyio, Publishing, 2010. 127-154. Abstract
n/a
dos Santos, Amarante F. P., and C. Cismasiu. "Comparison Between Two SMA Constitutive Models for Seismic Applications." Journal of Vibration and Control. 16 (2010): 897-914. AbstractWebsite

This paper analyses and compares the dynamic behavior of superelastic shape memory alloy (SMA) systems based on two different constitutive models. The first model, although being able to describe the response of the material to complex uniaxial loading histories, is temperature and rate independent. Thesecond model couples the mechanical and kinetic laws of the material with a balance equation considering the thermal effects. After numerical validation and calibration, the behavior of these two models is tested in single degree of freedom dynamic systems, with SMAs acting as restoring elements. Different dynamic loads are considered, including artificially generated seismic actions, in a numerical model of a railway viaduct. Finally, it is shown that, in spite of its simplicity, the temperature- and rate-independent modelproduces a set of very satisfying results. This, together with its robustness and straightforward computational implementation, yields a very appealing numerical tool to simulate superelastic passive control applications.

2008
dos Santos, Amarante F. P., and C. Cismasiu. "Comparison Between Two {SMA} Constitutive Models for Seismic Applications." Twelfth Conference on Nonlinear Vibrations, Dynamics, and Multibody Systems. Blacksburg, VA 24061 2008. Abstract
n/a
Cismasiu, Corneliu, and Filipe Amarante P. dos Santos. "Numerical simulation of superelastic shape memory alloys subjected to dynamic loads." Smart Materials and Structures. 17 (2008): 025036 (12pp). AbstractWebsite

Superelasticity, a unique property of shape memory alloys (SMAs), allows the material to recover after withstanding large deformations. This recovery takes place without any residual strains, while dissipating a considerable amount of energy. This property makes SMAs particularly suitable for applications in vibration control devices. Numerical models, calibrated with experimental laboratory tests from the literature, are used to investigate the dynamic response of three vibration control devices, built up of austenitic superelastic wires. The energy dissipation and re-centering capabilities, important features of these devices, are clearly illustrated by the numerical tests. Their sensitivity to ambient temperature and strain rate is also addressed. Finally, one of these devices is tested as a seismic passive vibration control system in a simplified numerical model of a railway viaduct, subjected to different ground accelerations.

2007
Santos, F. P., and C. Cismasiu. "Shape memory alloys in structural vibration control." EVACES'07 - Experimental Vibration Analysis for Civil Engineering Structures. FEUP, Porto, Portugal 2007. Abstract

The unique superelastic behaviour exhibited by shape memory alloys (SMAs) allows the material to recover after withstanding large deformations. This recovery takes place without any residual strains, while dissipating a considerable amount of energy. This property makes the SMAs particularly suitable for applications in vibration control devices. Numerical models, calibrated with experimental laboratory tests, are used to investigate the dynamic response of vibration control devices. These devices are built up of austenitic superelastic wires. The energy dissipation and re-centring capabilities, important features of these devices, are clearly illustrated by the numerical tests. One of these devices is tested as a seismic passive vibration control system in a simplified numerical model of a railway viaduct.

2005
Silva, M. A. G., C. Cismaşiu, and C. G. Chiorean. "Numerical simulation of ballistic impact on composite laminates." International Journal of Impact Engineering. 31 (2005): 289-306. Abstract

The paper reports experimental and numerical simulation of ballistic impact problems on thin composite laminated plates reinforced with Kevlar 29. Ballistic impact was imparted with simulated fragments designed in accordance with STANAG-2920 on plates of different thickness. Numerical modelling was developed and used to obtain an estimate for the limit perforation velocity V50 and simulate failure modes and damage. Computations were carried out using a commercial code based on nite differences and values obtained are compared with the experimental data to evaluate the performance of the simulation. Good correlation between computational simulation and experimental results was achieved, both in terms of deformation and damage of the laminates. Future work is advanced to include the interposition of an outer ceramic layer as well as examining the influence of dry-wet and temperature cycles on the mechanical strength of the plates and their temporal evolution under accelerated ageing.

2003
Silva, M. A. G., C. Cismaşiu, and C. G. Chiorean. "Low velocity impact on laminates reinforced with {P}olyethylene and {A}ramidic fibres." Computational Methods in Engineering and Science. Proceedings of the 9th International Conference EPMESC IX. Eds. V. P. Iu, L. N. Lamas, Y. - P. Li, and K. M. Mok. Macao, China: A.A.Balkema Publishers, 2003. 843-849. Abstract

The present study reports low velocity impact tests on composite laminate plates reinforced either with Kevlar 29 or Dyneema. The tests are produced using a Rosand Precision Impact tester. The experimental results obtained for Kevlar 29 are simulated numerically. The deflection history and the peak of the impact force are compared with experimental data and used to calibrate the numerical model.

Silva, M. A. G., C. Cismaşiu, and C. G. Chiorean. "Ballistic Simulation of Impact on Composite Laminates." Proceedings of the International Conference Constructions 2003. Vol. 2. Cluj-Napoca, Romania: The Technical University of Cluj-Napoca, 2003. 139-146. Abstract

The paper reports on numerical simulation of impact problems on fiber reinforced plastic composite laminated plates reinforced with Kevlar 29. The ballistic impact caused by STANAG-2920 projectile is analyzed to obtain an estimate for the V50 and the global damage. All estimate have been carried out using the finite difference numerical code AUTODYN-3D, are compared with the experimental data to illustrate the performance of the simulation. Good correlation between resulting simulations and experimental results is demonstrated both in terms of deformation and damage of the laminates and ballistic performance.

2002