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Abstract

Nowadays, the estimation of tensile forces in stay-cables or external tendons of Civil
Engineering structures is required during periodic inspections. Among the available
procedures, the ambient vibration testing (AVT) is recognized, in the scientific community, as
an expedited technique. However, its accuracy is closely related to precise estimation of
three key parameters that characterize the dynamic response of the cable, namely its mass,
free length and bending stiffness. While the cable mass is, usually, readily available, a
certain uncertainty is associated to the cable free length and bending stiffness, hindering the
accuracy of the assessed cable forces. This paper presents a practically applicable
optimization procedure that allows, for a given free length, to simultaneously estimate both
the installed tensile force and the cable bending stiffness. The application of this
methodology is shown on the stay-cables of Salgueiro Maia Bridge, crossing the Tejo River
in Santarém, Portugal.

INTRODUCTION

In the last decades, the estimation of the tensile forces installed in stay-cables or exterior
tendons of Civil Engineering structures through AVT has been widely studied. The growing
interest of engineering practitioners in this technique is explained by the satisfactory results
that can be obtained using this expedite procedure. This procedure can be useful in both
construction and service situations, in structures without pre-installed instrumentation for the
real-time monitoring of the installed forces in cables [1, 2, 3].

However, vibration measurements conducted and reported in the literature have shown that,
sometimes, the achieved accuracy was not acceptable. To produce accurate estimates, for
the installed tensile forces, this methodology requires that certain characteristic cable
parameters (cable mass, free length and bending stiffness) are defined with the lowest
degree of uncertainty possible. While the cable mass is usually available, the definition of the
cable free length and bending stiffness is often a challenging problem. In an attempt to
reduce the error associated to the above mentioned uncertainties, the present paper
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presents a possible definition for a multi-variable optimization problem, used to
simultaneously estimate the combination of cable tensile force, free length and bending
stiffness that best match the cable measured modal properties. The application of this
methodology is exemplified on eighteen stay-cables of Salgueiro Maia Bridge, shown in
Figure 1, crossing the Tejo River in Santarém, Portugal.

Figure 1 - Salgueiro Maia Bridge over the Tejo River

THEORETICAL FORMULATION

The estimation of the installed tensile force in stay-cables and exterior tendons through AVT
is usually based on the vibrating string theory [4]. This allows to relate the natural
frequencies of the vibration modes i of a string with its tensile force N.
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Equation (1), which describes this theory, is quite simple and its deduction is easy to
understand. However, it implies simplifications that may not be admissible when applied to
the case of Civil Engineering structures: although it considers the cable free vibration length
L and its distributed mass per unit length m, it disregards the cable bending stiffness and its
curvature associated to self-weight.

It is already known [5, 6] that the vibrating string theory is no longer valid when the cables
are too short. For these cases, the influence of the bending stiffness (E/) is no longer
negligible and the behaviour of the cables is therefore close to that of a beam clamped at
both ends. The natural frequencies of the clamped beam were deduced by Morse and Ingard
[4] and include the effects of EIl. Subsequently, Mehrabi and Tabatabai [7] developed a
formulation that considers not only the effects of bending stiffness but also the effects of the
curvature of the cables due to self-weight.

In this former formulation (which is the one adopted in the present study), the bending
stiffness, which mainly affects the upper order vibration modes, is introduced through the
dimensionless bending stiffness { given by



—
_ )

To consider the effects of the typical geometric nonlinearity of cable problems, the Young
modulus of elasticity E must be corrected to the valued given by Ernest [8],

®3)

where E and y are the Young modulus of elasticity and the specific weight of the material,
respectively,  the horizontal projection of the free length of the cable and o its installed
stress.

In what respects the effects of the cable sag, they essentially affect the first mode of
vibration and are taken into account through the Irvine parameter [9], defined as
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where,
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The corrective formulation derived by Mehrabi and Tabatabai [7] is then written as a function
of and ,and is given by

_ _ (7
where,
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UNCERTAINITIES ASSOCIATED TO FREE LENGTH AND BENDING STIFFNESS

When equation (7) is to be applied in practice, the definition of the free length L and the
bending stiffness El is challenging and usually associated to a certain degree of uncertainty.

The cable free length of vibration, L, is defined as the distance between the two modal nodes
close to the cable ends. In the case of stay-cable, the location of these nodes is between the
strands deviator (often inside protective jackets) and the anchor plate where the strands are
fixed. The associated uncertainty can reach significant values (3% in the present case
study) and hinder the accuracy of the estimated tensile force. A possible solution to minimize
the error in the definition of the free length is to perform a modal identification of higher order
modes and to measure the length between the nodes of higher order modes close to the
anchor [1]. However, this is a burdensome procedure and is seldom used in practice, as it
requires measurements on several points along the cable. It was also not considered in the
present study.



In what respects the definition of the bending stiffness, El, it is necessary to take into

account that the relative slip between the strands of the cable affects the cable moment of

inertia, /. Therefore, the value of | will vary between (no interaction between strands) e
(monolithic cross section), defined by equations (11) and (12), respectively [10],

- P ,
(11) (12)

where n is the number of strands, , and are the moment of inertia, the cross-section
and the relative position of an individual strand of the cable. One can see that the range of
possible values for I is considerable and therefore, estimating a reasonable value is not
trivial.

OPTIMIZATION PROBLEM

In an attempt to reduce the error associated to the above uncertainties, and taking
advantage of the technological evolution that currently allows the identification of a high
number of natural frequencies from inexpensive AVT, a multi-variable optimization problem
was defined with the objective of adjusting the theoretical natural frequencies given by
equation (7) to the natural frequencies identified experimentally, by simultaneous variation of
N, L and EI.

To better understand the way each of the optimization variables affects the natural
frequencies of the cables, a sensitivity study was performed for a characteristic stay-cable of
the Salgueiro Maia Bridge. Figures 2 to 4 illustrate the sensitivity of the first 15 scaled natural
frequencies to cable axial force, free length and moment of inertia.
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Figure 4 - Frequencies sensitivity to cable moment of inertia

Analysing the results presented in Figures 2 to 4 one can readily see that, while both the
axial force N and the free length L affect evenly all the natural frequencies of the cable, the
cable moment of inertia I mainly affects the higher modes. It can also be observed that, for
similar relative variations of N and L, the free vibration length has a greater effect on the
frequency value (therefore, its value is important to be known as accurately as possible).
Moreover, one can see that uncertainty caused by / is more than 4 times bigger in the 15"
frequency than the one corresponding to the 1 frequency. Therefore, it is expected the
need of a large number of experimental natural frequencies for accurate estimates of the
cable bending stiffness.

Based on the results of the sensitivity tests, two objective functions were defined using the
experimental values of the natural frequencies of the cable, , and the theoretical
counterparts defined by equation (7),
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Equation (13), identified as unscaled objective function, is more sensitive to higher
frequencies and therefore, when used in the optimization problem will produce a solution



more sensitive to the bending stiffness of the cable. Alternatively, equation (14), identified as
scaled objective function is evenly sensitive to all frequencies and is expected to produce a
more balanced result. Using these objective functions, the optimization problem is therefore
expressed as:

(15)

The result of the optimization problem (15) is the set of and which minimize the
objective function (13) or (14), for a close match between the experimental and theoretical
values of the natural frequencies of the cable.

CASE STUDY: SALGUEIRO MAIA BRIDGE

The Salgueiro Maia Bridge, located in the city of Santarém, Portugal, is a motorway cable-
stayed bridge with a semi-fan configuration. Inaugurated in 2000, it has a total length of 570
m, of which 486 m are suspended by 72 stay-cables, divided between two masts. The stay-
cables have total lengths ranging from 31 to 131 m and are made up of 55, 61 or 73 self-
protected strands, wrapped in High Density Polyethylene jackets. The present study is
focused on the 18 stay-cables closest to the Santarém bank, identified as TO1t to T18t, with
the first being the shortest stay-cable and the last the longest.

During the experimental campaign, the vibrations of the 18 stay-cables were recorded for 10
minutes with an acquisition rate of 100 Hz, using a PCB accelerometer (model 393B04)
connected to a SCXI-1530 acquisition board on a NXI-6221 National Instruments platform
(see Figures 5 and 6).
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Figure 5 — Poitioning of the acquisition system Figure 6 — Fastening of the accelerometer

In what follows, the estimation of the tensile force using the above methodology is illustrated
for the T18t stay-cable. First, the first natural frequencies are estimated by performing a FFT
on the signal recorded during the AVT. For this cable, the first 15 natural frequencies were
readily identified, as shown in Figure 7.
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Figure 7 — Stay-cable T18t: recorded signal and modal identification

The next step is to define uncertainty intervals for L and /. The maximum allowed value for
the cable free length of vibration, , defined as the distance between the anchor plates, is
identified according to the design drawings of the bridge as 130.39 m. The minimum allowed
value, , defined as the distance between the strands guide deviators, is also identified as
122.83 m. Therefore, the free length of vibration for this cable, L, can be estimated to 126.61
m with an uncertainty of +3%. The admissible range for the cross-section moment of inertia
is computed considering the 73 strands of the cable, their configuration (given in"the design
drawings) and equations (11) and (12), to vyield and as m* and
m*, respectively.

To better understand the relation between N, L and / in the optimization problem, the

objective functions defined by equations (13) and (14) are plotted for a constant / in Figures
8 and 9, and for constant L in Figures 10 and 11.
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Analysing the plots in Figures 8 and 9 one can see that, for a given bending stiffness of the
cable, there are several possible combinations (N, L) that minimize the objective function.
This conclusion is valid for both unscaled and scaled version of the objective function,



although one can see that the use of the scaled version yields slightly higher values for the
cable tensile force. The inexistence of a localized minimum for the objective functions means
that the optimization problem cannot be run simultaneously for L and N and therefore, an
uncertainty in L must be contemplated in the analysis. Once the cable free length is fixed,
situation illustrated in Figures 10 and 11, one can see that the objective functions present a
global minimum and therefore, the optimization problem can find a solution (N, /) that
minimizes the differences between the experimental and theoretical natural frequencies of
the cable. One can also see that the scaled version of the objective function yields, once
again, slightly higher values for the cable tensile force.
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Based on these observations, the optimization problem was run for the unscaled and scaled
version of the objective function defined by equations (13) and (14), for two cable free length
of vibration, and , with and an initial guess for N (close to the design
value). Figures 12 to 15 illustrate the optimization process for the T18t stay-cable.
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Analysing the plots in Figures 12 to 15 one can see that, according to the applied
methodology, the tensile force installed in T18t cable ranges between 7296 and 8270 kN.
Therefore, one can estimate an average value of 7783 kN with an uncertainty of £6%. This
result is greatly influenced by the uncertainty in the definition of the cable free length of
vibration since the solutions produced by the use of the scaled or unscaled version of the
objective function are not significant. It is also possible to notice that the estimated bending
stiffness of the stay-cable is very close to the value obtained considering , with a
maximum deviation of 1.5%.

Table 1 and Figure 16 resume the optimization results for all the 18 stay-cables object of the
present study. Figure 16 also shows the forces obtained from readings of the load-cells
installed in some of the stay-cables of the bridge, which are a part of its monitoring system.
The load-cells yield the force installed in one monostrand and the overall force in the
corresponding stay-cable is extrapolated from this single reading, considering that the forces
in all the monostrands are similar. These readings were performed in 2000 and 2010.

Table 1 - Optimization results (nif: number of identified frequencies)

L min L max
st it o1 | | 1 | v | || S e | St | stten| 0
Y (kg/m) | (M%) (m*) (m) (m) N)
N (kN)| 1/1_min (%) [N (kM)| 1/I_min (%) [N (kN)| VI_min (%) [N (kN)| 1/1_min (%)
TO1t 4 |100,901|1,48E-07 | 2,16E-05| 25,32 | 3075 |4340 100,0 4528 100,0 6432 100,0 6709 100,0 5502 +18,0
TO2t 5 30,96 | 3587 |4394 100,0 4503 100,0 5914 100,0 6060 100,0 5218 +13,9
TO3t 6 36,06 | 41,16 |4347 100,0 4438 100,0 5676 100,0 5794 100,0 5064 +12.6
T04t 6 41,44 | 46,70 | 4491 100,0 4521 100,0 5713 100,0 5751 100,0 5119 +11,0
75,374 [1,11E-07 | 1,22E-05
TO5t 7 46,80 | 52,31 |4719 31927 | 4964 100,0 5806 | 4972,3 |B210 100,0 5447 +12,3
TO6t 7 52,51 | 58,14 |5215 100,0 5265 100,0 6400 100,0 6462 100,0 5836 +0,7
TOTt 8 58,11 | 63,96 |5522 100,0 5566 100,0 6695 100,0 6749 100,0 5133 +9,1
T8t 13 63,87 | 69,93 |5876 100,0 5910 100,0 7050 100,0 7091 100,0 5482 +8,6
TO9t 9 69,67 | 75,91 |5707 100,0 5775 100,0 6780 100,0 6861 100,0 6281 +8,5
T10t 13 | 34150 |1,248-07) 1,508-05 75,51 | 81,92 |6361 7264 6431 100,0 7486 1016,0 |7574 100,0 5963 +8,1
T11t 11 81,35 | 87,92 |6721 4493 6786 100,0 7851 605,9 7930 100,0 7322 +7,7
T12t 10 87,10 | 93,93 |6797 100,0 6847 100,0 7908 100,0 7967 100,0 7380 +7.4
T13t 10 92,98 | 99,96 |6990 100,0 7011 100,0 8082 100,0 8107 100,0 7548 +6,9
T14t 11 98,90 | 106,00 | 7160 100,0 7225 100,0 8228 100,0 8304 100,0 7729 +6,9
T15t 10 |100,901|1,48E-07 | 2,16E-05| 104,83 | 112,06 | 7045 100,0 7080 100,0 8054 100,0 8094 100,0 7568 +6,5
T16t 11 110,88 | 118,23 | 7052 100,0 7099 100,0 8021 100,0 8074 100,0 7562 +6,3
T17t 14 116,84 | 124,30 | 7182 100,0 7236 100,0 8131 100,0 8193 100,0 7686 +6,2
T18t 15 122,83 | 130,39 | 7296 100,9 7336 100,0 8225 101,5 8270 100,0 7782 +5,9
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Figure 16 — Optimization results

The overall results for the force estimations show that the uncertainty associated with the
force decreases as the length of the stay-cable increases. This is due to the fact that, as the
stay-cables become longer, the ratio between and becomes closer to the unit, and
hence the indefinition of the free length of vibration of the cables associated with the
placement of the deviators becomes less important. Also AVT is less effective in shorter
stay-cables, since they are more difficult to be excited by ambient vibration, leading to a
fewer number of identified frequencies, as it can be observed in Table 1. This makes shorter
stay-cables more difficult to characterize in terms of force since, due to their higher bending
stiffness, they would need, as previously shown, a higher number of identified frequencies in
order to yield good force estimations.

Although the readings provided by the load-cells give important information regarding the
evolution of the forces in the stay-cables, the value of the forces themselves are subjected to
a certain degree of uncertainty, due to the extrapolation procedure which is used in their
definition. Unfortunately, it was also not possible to obtain up-to-date readings of the load
cells, directly comparable with the estimations resulting from the proposed optimization
procedure. In any case, the force estimations provided by the optimization process are
consistent with the available readings from the load cells, although the estimations for stay-
cable T02t seem too high.

CONCLUSIONS

The present paper presents a possible definition for a multi-variable optimization problem,
used to simultaneously estimate the combination of cable tensile force, free length and
bending stiffness that best match the cable measured modal properties. The application of
this methodology is exemplified on eighteen stay-cables of Salgueiro Maia Bridge and from
the performed analysis one can draw the following conclusions:

i) it was proven the inexistence of a localized minimum for the objective functions in terms of
N and L, showing that the optimization problem cannot be run simultaneously for these
varibles and therefore, an uncertainty in L must be contemplated in the analysis.

i) once the cable free length is fixed the objective functions present a global minimum and
the optimization problem can find a solution (N, /) that minimizes the differences between the
experimental and theoretical natural frequencies of the cable.

lii) the overall results for the force estimations show that the uncertainty associated with the
force decreases as the length of the stay-cable increases.



iv) shorter stay-cables are more difficult to characterize in terms of force since, due to their
higher bending stiffness, they need a higher number of identified frequencies in order to yield
good force estimations. Unfortunately AVT provides fewer identified frequencies for these
type of stay-cables.

V) in general, the force estimations provided by the optimization process are consistent with
the available readings from load cells directly deployed in the stay-cable.
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